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Abstract—As the flash memory performance increases with
more bandwidth, the flash memory channel or the interconnect
is becoming a bigger bottleneck to enable high performance
SSD system. However, the bandwidth of the flash memory
interconnect is not increasing at the same rate as the flash
memory. In addition, current flash memory bus is based
on dedicated signaling where separate control signals are
used for communication between the flash channel controller
and the flash memory chip. In this work, we propose to
exploit packetized communication to improve the effective flash
memory interconnect bandwidth and propose packetized SSD
(pSSD) system architecture. We first show how packetized
communication can be exploited and the microarchitectural
changes required. We then propose the Omnibus topology
for flash memory interconnect to enable a packetized network
SSD (pnSSD) among the flash memory – a 2D bus-based
organization that maintains a “bus” organization for the
interconnect while enabling direct communication between the
flash memory chips. The pnSSD architecture enables a new
type of garbage collection that we refer to as spatial garbage
collection that significantly reduces the interference between
I/O requests and garbage collection. Our detailed evaluation
of pnSSD shows 82% improvement in I/O latency with no
garbage collection (GC) while improving I/O latency by 9.71×
when GC occurs in parallel with I/O operation, through spatial
garbage collection.

Keywords-Solid state drive, interconnection networks,
garbage collection

I. INTRODUCTION

Bandwidth of NAND flash memory-based Solid State

Drive (SSD) has increased with improvement in flash mem-

ory technology [19] [20] [36] [6] [31] and high-speed

interface protocol [10]. To support high-bandwidth of I/O

requests, internal parallelism of an SSD has been exploited

(e.g., multiple channels, chips, dies, etc.) and multi-plane

commands [37] enable additional bandwidth through the

multiple parallel planes. As the more flash memory band-

width results in more I/O requests, the performance require-

ment of the Flash Translation Layer (FTL) continues to

increase; in addition to the flash memories, other system

resources such as cores, DRAM, and system-bus are heavily

utilized during I/O operations.
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Figure 1: (a) Flash memory (write) bandwidth trend across

various flash memory chips from the industry and (b) the

flash memory bus bandwidth trend over the past 15 years.

Fig 1(a) illustrates how the flash memory bandwidth per

chip has increased over the past 15 years where each data

point represents flash products from different vendors. There

has been approximately an order of magnitude increase in

bandwidth every 5 years. However, bandwidth of the flash

memory channels (or bus) has not increased at the same

rate, as shown in Fig 1(b), as there has been an order

bandwidth increase approximately every 10 years. Since

there are multiple flash memory chips connected to a given

channel (e.g., 8 – 16), the increase in parallelism results in

the flash channel interconnect becoming a bigger bottleneck

in overall system performance. In this work, we propose how
a packetized interface can increase the effective bandwidth
in the flash channel bus.
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For multi-core processors or system-on-chip, network-

on-chip (NoC) architectures have been proposed [9] where

instead of ad-hoc or dedicated wiring, interconnect resources

can be more efficiently utilized when “packets” are routed,

not “wires.” In this work, we take a similar approach in

the design of the flash memory channel or interconnect.

In particular, modern flash memory channels are effectively

designed as dedicated wires as different control signals are

provisioned for communication between the flash channel

controller and the flash memory chips while dedicated sig-

nals (or wires) are used for data (or payload) communication.

However, dedicated channels can result in poor utilization

of the bandwidth – for example, in the modern NV-DDR4

interface, 10 out of the 18 pins are used for data/payload

while the rest of the pins are dedicated for control and cannot

be utilized for data communication. In comparison, this

work proposes to exploit the available bandwidth by using

“packets” for communication between the SSD channel

controller and the flash memory chips, to enable a packetized
SSD (pSSD) architecture.

Flash memory interconnects are fundamentally different

from both traditional network-on-chip and large-scale sys-

tem interconnection networks because of the difference in

the packaging constraints [8]. In particular, flash memory

are commodity components where the pin constraints are

particularly limited and power constrained. As a result,

traditional interconnection network architectures, including

topology and flow control, are not applicable for the flash

memory interconnect. In this work, we propose the mi-

croarchitecture to support packetized SSD (pSSD) system,

including changes at both the SSD controller and the flash

memory side. In particular, we leverage existing pins that are

commonly used in flash-based SSD but repurpose them to

communicate packets. While the interface logic does change,

the internal flash behavior does not change in pSSD.
Our proposed pSSD provides approximately 2× improve-

ment in flash channel bandwidth and improve overall per-

formance. However, the bus-based topology for the flash

memory interconnect does not provide connectivity between

the flash memory chips and limits path diversity. As a result,

we partition the channel bandwidth to propose the Omnibus

topology – a 2D bus topology organization that continues to

maintain a bus-based organization while providing connec-

tivity between the flash chips. By introducing vertical bus

channels, the Omnibus topology not only enables connec-

tivity between the flash channels within the same column

but we exploit the bandwidth available at the flash channel

controller to control both a horizontal channel and a vertical

channel. Given the Omnibus organization, we demonstrate

how spatial garbage collection can be implemented where

garbage collection can be done simultaneously, in space,

with the I/O request handling of the SSD. In particular, main

contributions are as follows:

• We propose packet-based SSD (pSSD) systems to
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Figure 2: High-level block diagram of modern SSD archi-

tecture.

enable higher effective flash channel bandwidth by

communicating “packets” instead of dedicated signals

to improve performance.

• We exploit packetized interface to create flash-to-flash

connectivity that enables path diversity in the host-to-

flash communication and minimize flash traffic con-

tention. In particular, we propose Omnibus topology

where both a vertical and a horizontal channel bus are

managed by a single flash controller.

• We propose spatial garbage collection that takes ad-

vantage of flash-to-flash connectivity to enable GC to

occur simultaneously as I/O and minimize interference

between GC and I/O.

• Our evaluations show that pSSD results in up to 82.3%

improvement in overall performance while reducing the

tail-latency significantly by up to 18.7×.

II. BACKGROUND

In this section, we provide a background on modern

SSD architecture and flash channel interconnect. We provide

an overview of the flash channel controller and the flash

interface between the controller and the flash memory itself.

A. SSD Architecture

Fig 2 shows a high-level overview block diagram of a SSD

controller that consists of multiple sub-systems including

NVMe host interface, multi-core subsystem that executes

the FTL (Flash Translation Layer), DRAM, system-bus

(e.g. AXI), and flash controller/bus with flash memory. In

this work, we refer to flash memory channel or bus as

the interconnect structure that is used to connect the flash

controller and the flash memory devices. We also refer to this

as flash memory interconnection network or flash memory

interconnect since a collection of flash memory bus are

used within a modern SSD architecture. The flash controller

contains an ECC unit, internal page buffers, and a flash

command control logic which includes a timing sequence

generator for each control/data pin.
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Symbols Type Description

CLE Control Command Latch Enable
ALE Control Address Latch Enable
RE Control Read Enable
RE c Control Read Enable Complement
WE Control Write Enable
WP Control Write Protection

CE Control Chip Enable
R/B n Control Ready/Busy

DQ[7:0] Data I/O Data Input/Outputs
DQS Data I/O Data Strobe
DQS c Data I/O Data Strobe Complement

Table I: Flash interface signal description in Open NAND

Flash Interface (ONFi) [35]

B. Flash Channel Interface

Modern SSD adopts multi-channel (or bus) architecture,

and a flash memory channel is connected to multiple flash

chips. Modern flash memory bus (or NAND flash inter-

face) [35] such as NV-DDR4 operates asynchronously with

multiple control and data pins as summarized in Table I. In

the NV-DDR4 interface, there are 18 signals for communica-

tion but only 8 of them are used for payload or “data” itself

(i.e., DQ) while the remaining signals are used a control sig-

nals. There are two signals DQS, DQS_c used as strobe sig-

nals for the data while the remaining 8 signals (CLE, ALE,
RE, RE_c, WE, WP, CE, R/B) are used to differen-

tiate the type of data being transmitted across DQ or to

communicate other functionalities (e.g., write protect WP).

For example, CLE (command latch enable) is asserted to

signal that DQ contains the command information. Other

control signals (e.g., ALE (address latch enable), RE (read

enable), WE (write enable)) are used to appropriately specify

the data type that is communicated through DQ.

The flash controller selects a flash chip target among

multiple chips (or ways) using CE signal, and other control

signals are used to communicate the flash I/O operation (e.g.,

Read/Write/Erase). In order to improve efficiency, command,

address, and data are also sent through the DQ pins. However,

given the large size of payload for data, most of the control

signals are idle when payloads are being communicated. In

this work, we propose to exploit the signal interface by

communicating “packets” instead of leveraging dedicated

signals to enable better sharing of the bandwidth or the pins.

C. Related Work

Interconnection Network: There have been many

different topologies proposed in interconnection networks,

including direct topologies (e.g., torus/mesh) and indirect

topologies (e.g., fat-tree, folded-Clos) [8]. Network-on-chip

(NoC) topologies have been proposed to minimize network

diameters [24] [1] and recent topologies in large-scale net-

works have exploited high-radix switches to reduce network

diameters [27] [25]. Network-on-SSD [38] was proposed to

replace the flash memory bus with a conventional intercon-

nection network topology (e.g., 2D mesh). While this work

share similar goals, the key difference is that we argue that

such multi-hop network is not practical in an SSD as we dis-

cuss in Sec V. Various bus topologies have been proposed for

network-on-chip in multicore systems, including hierarchical

bus topologies, segmented bus topologies, and various ring

organizations [21] [39] However, to the best of our knowl-

edge, no prior work has leveraged a multi-dimensional bus

topology for an SSD flash interconnect system. Decouple

SSD (dSSD) [23] was proposed to decouple the front-end

of the SSD (i.e., flash controller) with the back-end (i.e.,

flash memory device) by introducing a network-on-chip to

interconnect the flash controllers; however, dSSD assumes a

bus structure for the flash memory interconnect.

Garbage Collection: Many prior works have been

proposed to minimize I/O interference with GC [17], [29],

[37], [41]. Preemptive GC [30] postpones GC when I/Os are

serviced, and executes page copies for GC at a later time.

Tiny-tail [41] exploits redundancy to avoid flash conflict for

I/O read operations. PaGC (parallel GC) [37] maximizes

internal flash bandwidth through multi-plane operations for

GC. However, as the flash memory bandwidth increases,

prior solutions increase flash-bus conflict even worse since

more pages need to be transferred. The spatial separation

of SSD for I/O and GC has been explored recently [22] on

multiple SSDs; however, decoupling I/Os and GC within an

SSD through a flash network has not been explored. Spatial

GC proposed in this work shares some similarities to DRAM

refresh management where some rows are refreshed while

other rows respond to memory requests [34].

Packet-based communication: Packet-based communi-

cation has been commonly used in communication. Pack-

etized interface has been adopted for different systems to

improve communication efficiency, including on-chip net-

works [9], memory-semantic fabric such as GenZ [11], and

CXL [7] to interconnect processors, accelerators, and mem-

ory. While GenZ and CXL provide efficient communication

between the host and the I/O, they are not necessarily

appropriate for internal chip-to-chip communication within

an SSD because of the protocol overhead. In addition,

the packaging constraints of the chip-to-chip constraints in

an SSD present unique challenges, including limited pin

interface and limited support for a hardware router or a

switch.

III. MOTIVATION

In this section, we describe the need for a packetized SSD

(pSSD) architecture to effectively increase the flash channel

bandwidth. As described earlier in Fig 1, flash memory

bandwidth has continued to increase while the flash memory

channel (or the interconnect between the flash memory and

the flash controller) has not increased at the same rate.

As a result, we discuss how a packetized interface can

effectively increase the bandwidth. In addition, we show how

a packetized SSD can enable flash-to-flash communication
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Figure 3: Analysis showing the imbalance of channel utiliza-

tion for (a) read and (b) write access for an SSD system with

8 channels and 8 flash chips per channel on the Exchange-

1 [28] trace. Write results in balanced usage while read

accesses results in unbalanced accesses.

– providing an opportunity to minimize the interference

between internal and external SSD traffic, as well as load-

balancing across the different flash channels.

A. Flash Channel Bandwidth & Packetized Interface

The performance and capacity of an SSD have been

increased by exploiting various levels of parallelism, in-

cluding channel and chip parallelism, as well as parallelism

within a flash chip. As parallelism improves capacity and

performance, the amount of bandwidth per flash chip has

also grown exponentially (Fig 1(a)). As the amount of

bandwidth per chip increases and more chips are added to

each flash channel, the amount of bandwidth from the flash

channel has not increased at the same rate (Fig 1(b)). As a

result, the flash channel bandwidth is becoming an important

component in determining overall SSD performance. The

flash channel bandwidth can be increased either through

higher frequency or by adding additional pins (or channels).

However, the scalability of both approaches are limited

because of the power constraints and the pin-constraints. In

this work, we explore how the effective bandwidth of the

flash channel can be increased to improve overall perfor-

mance (bandwidth) while enabling higher I/O performance

for garbage collection interference by separating I/O and GC

traffic.

In particular, instead of relying on a dedicated signal-

based interface between the flash memory and the con-

troller, we show how the packetized interface can effectively

increase the amount of bandwidth with better utilization

of the existing channels in an SSD system. Using packet-

based communication is not new as it has been adopted in

many domains, including large-scale systems and multicore

network-on-chip noc, as well as system-on-chip architec-

tures [2]. It is well-known that packet-based communication

can improve scalability and improve performance. Thus, in

this work, we explore how packetized communication can

be leveraged to improve overall effective bandwidth within

an SSD system for the flash memory interconnect.

B. Flash-to-flash Connectivity

The packetized SSD enables flash-to-flash connectivity

that can provide significant benefits in the SSD system
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Figure 4: Performance improvement in different workloads

as the flash channel bandwidth is increased by up to 2×.

for flash-to-flash communication. In particular, it allows

potential isolation of internal and external traffic within
the SSD. In this work, we differentiate between SSD internal
traffic and external traffic. We define traffic as internal traffic

if the source and destination of the communication remain

within the SSD itself (e.g., copy operations used during

garbage collection) while external traffic is defined as when

only the source or the destination (but not both) is within

the SSD (e.g., I/O operations such as read or write). If these

two type of traffic can be handled separately, it enables the

I/O operations (external traffic) and the garbage collection

(internal traffic) to be executed simultaneously while mini-

mizing the interference between the two traffics. In Sec VI,

we show how the packetized SSD with a “network” for the

flash memory interconnect can provide such separation of

traffic.

The flash-to-flash connectivity also enables path diversity

that can be exploited when the flash channel bandwidth

utilization is not well load-balanced across the channels. An

example of the bandwidth imbalance is shown in Fig 3 where

x-axis is time and y-axis indicates the different flash chan-

nels.1 Only one representative workload trace (Exchange-1)

is shown but other workloads follow similar trends. Within

the trace, we separate out the read and the write accesses

(or I/O operations). Write accesses show relatively load-

balanced access across the different channels but the read

accesses are shown to be imbalanced in access pattern.

The write accesses are load-balanced since the physi-

cal page addresses for write operations are determined by

the FTL because of NAND flash “erase before program”

characteristics – thus they are often distributed uniformly

across the different channels (and different flash memory

chips). In comparison, read access location is determined

based on the address of the physical page where data was

written and is determined by the workload characteristics.

The load imbalance is not necessarily a new problem but

the impact from the such imbalance was minimal when

the bandwidth of flash memory itself was relatively low,

compared to the flash channel bandwidth; however, as the

latency/bandwidth of flash memory has improved with the

1Detailed evaluation setup is described in Sec VII. We assume an SSD
system with 8 channels, with 8 flash memory chips per channel and the
flash memory is modeled with ULL [5]
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advancement of flash memory technologies (e.g., ultra-low

latency [5]), the impact from the load-imbalance has become

greater. Potential performance improvement from the higher

flash channel bandwidth is shown in Fig 4 where we simulate

the performance of various trace workloads as the flash in-

terconnect bandwidth is increased. On average, 2× increase

in bandwidth results in an 85% increase in performance;

however, for some workloads with higher imbalance or

higher utilization, the potential improvement can be up to

6×. In this work, we explore how the higher effective

bandwidth from the packetized interface can provide such

a performance improvement.

C. Challenges of pSSD

While potential benefits of packetized communication

(and flash-to-flash connectivity) have been described, there

are several challenges to enable the packetized SSD (pSSD)

system. Some of the main challenges and opportunities can

be summarized as follows:

• Minimize overhead: The overhead from packetized

communication needs to be minimized, compared to

other interconnection networks. For example, a conven-

tional router or switch with deep buffers within flash

memory is not feasible.

• Network topology: While packetized interface enables

a network of interconnect flash memory, previously

proposed network topologies are not applicable to the

constraints of the pSSD system because of limited pin

bandwidth of the flash memory.

• Flash-to-flash channel utilization: The pSSD-based

system enables flash-to-flash connectivity but current

systems cannot properly exploit such connectivity. We

propose how spatial garbage collection can exploit such

connectivity to provide significant improvement in tail-

latency through separation of I/O and garbage collection

traffic.

In the following sections, we describe our proposed pack-

etized SSD architecture to minimize performance overhead

(Sec IV), a 2D bus-based Omnibus topology organization

to minimize network diameter while maintaining a similar

communication interface as modern SSD flash chip (Sec IV),

and exploit flash-to-flash communication to propose spatial

garbage collection (Sec V).

IV. PACKETIZED SSD ARCHITECTURE

In this section, we describe our proposed packetized

SSD (pSSD) architecture where we exploit packetized com-

munication interface that are commonly used in packet-

based communication to increase the effective bandwidth

of the flash memory channels, compared to the current

flash interface that relies on dedicated signals or pins. The

packetized interface can increase the effective bandwidth by

approximately 2× without introducing additional signals or

increasing the signaling rate. We describe the architecture

Flash controller
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Figure 5: The block diagram of the interface for (a) signal-

based conventional mechanism and (b) proposed packet-

based method with modified flash controller/memory. For

simplicity, only one flash memory is shown but multiple

flash memory chips would share the controller and the data

bus.

and the interface changes required to support the packetized

interface, as well as the packet overhead; however, given

the relatively large packet size in SSD (e.g., 16-64 kB page

size), the overhead of packetized communication is relatively

small. In this work, we define conventional flash memory in-

terface as dedicated signaling as separate (dedicated) control

signals/pins are used.

A. Packet-based Flash-interconnect

In this work, we observe that since a significant fraction of

flash memory interconnect bandwidth is idle or not utilized

when communicating payload, and propose a packet-based

SSD interconnect that we refer to as packetized SSD (pSSD).

As a result, most of the dedicated control signals are no

longer needed but packets are communicated between the

flash controller and the flash memory chip(s). The only

control signals that are required in our proposed pSSD are

the signals necessary for proper handshaking to determine

who has access to the shared bus. Given that the interconnect

is assumed to be a “bus,” proper handshaking is necessary

between the controller and the different flash memory chips

connected to it. In our proposed pSSD, we leverage the

existing CE (chip enable) signal to enable communication

between a particular chip and the flash controller. In effect,

all of the individual control signals described earlier are

simply replaced with single enable control signals. Note that

there is a separate CE for each memory chip that is connected

to the bus. The flash controller also uses the R/B (ready or

busy) control signal in our proposed packetized interface to

communicate the status of each flash chip.2

Fig 6(a) illustrates how a read operation is communicated

in conventional flash SSD system with multiple control pins.

A flash controller first selects a flash die for the target page

address through CE_n, and a read command (read command

consists of two commands 00h for the first command and

2Note that a flash memory die does not initiate data transfer, however,
it is requested by the flash controller using R/B pin status.
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30h for the second command [35]) is issued (via DQ[7:0])

by the flash controller while CLE is asserted. Then, column

addresses are transmitted followed by the row address with

ALE control signal asserted with the addresses. Finally,

after issuing the second read command (30h), the flash

memory reads a page and stores the page to an internal

page register (tR), and the page is read out by the flash

controller through flash-bus for multiple cycles using read

enable (RE_n) signals.

In comparison, the communication for a read operation

in pSSD is shown in Fig 6(b). The pSSD uses two message

types, control and data packets. A control packet is used to

send the commands and addresses as necessary. The data

packet includes page data with additional header informa-

tion. Flash chip enable (CE) signal is first asserted such that

the flash memory is ready to receive the packet. Then, the

control packets that contain read command/addresses are

transmitted to the destination flash memory chip. After a

read flash operation is done (tR), data packets (D1,D2, ...)
are transmitted from flash memory to the flash controller.

Difference from the signal-based page readout that uses

RE_n signals, packetized SSD initiates RE_n signals to

readout the internal page data through “read data transfer”

command, a new flash command that read the page data

with the packetization interface. The “read data transfer”

command asserts RE_n signals internally and enables the

flash memory to start transfer of the page data (or the

payload).

B. pSSD Microarchitecture

The pSSD system requires changes to both the flash

channel controller and the flash memory interface to support

the packetized communication. We discuss the details of

the changes required, as well as the overhead from using

packets.

1) Flash Controller Microarchitecture: Conventional bus

structure requires an arbitration logic that receives requests

and generates the appropriate grant signal [8]. However, to

reduce the complexity of such bus arbiter, we follow the

same control logic as the baseline SSD flash channel bus

where “arbitration” is effectively done by the flash channel

controller through the hand-shaking with the CE and R/B
pins. We effectively offload the timing sequence generator to

the flash memory inside, and the flash controller generates

a packet that contains a header to present whether it is a

control or data packet.

As shown in Fig 5(b), the flash command controller

remains the same; the main difference is the introduction

of packetization, at the interface to introduce the appropriate

packet header before driving the signals to the flash memory.

By not utilizing the control signals that are used in the

conventional (dedicated) signalling approach, the number of

signals (or bandwidth) available for communication can be

effectively increased by approximately 2×. In our packetized

(a)
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Figure 6: A timing diagram for a READ transaction for (a)

conventional SSD with signal-based interface and (b) packet-

based interface with pSSD.

SSD, we exploit the additional bandwidth to provide 2×
improvement in the flash channel bandwidth. In Section V,

we describe how this bandwidth can be partitioned to enable

flash-to-flash connectivity.

2) Flash Memory Interface: A packet received by the

flash memory needs to be properly interpreted. While the

interface between the controller and the flash memory is

modified with pSSD, the internal flash memory or orga-
nization is not modified as we introduce a controller logic

between the external pins and the internal flash die. A high-

level block diagram of flash memory for pSSD is shown

in Fig 7(a), with a dotted-box around the baseline flash

memory components that are not modified. pSSD introduces

two additional hardware logic at the flash memory – an on-

die controller and an on-die data-plane.

The role of the on-die controller is to interpret the packet

header and generate the corresponding control signals to

the flash memory – for example, if a READ packet is

received, the read control signal (RE_n) will be asserted.

The inputs to the on-die controller are the DQ pins as well

as the handshaking pins. The on-die controller also has

an internal FIFO queue that stores packets received from

the flash channel controller and based on the commands

received, a state-machine is used to properly generate the

signals to the flash memory.

The on-die controller determines whether the packet is

a control packet or a data packet using “Type” bits of the

packet header as shown in Fig 8. If the packet is a control

packet, the size of the packets is determined by the T, C,
R bits that indicate the number of flits transmitted for the

command itself and the column and the row addresses. One

the command and the addresses are received by the on-die

controller, they are effectively “forwarded” to the flash mem-

ory array cells using the same interface as the conventional
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Figure 7: (a) A high-level block diagram of the flash memory

architecture for the packetized SSD, (b) the on-die controller

that is added to provide support for the packetized interface,

and (c) the on-die data-plane diagram that handles the packet

data payloads as well as the flash-to-flash communication.

flash interface (or the dedicated control signals). As for the

logic introduced to generate the control signals, the logic is

very similar to the control logic that existed within the flash

controller in the baseline SSD architecture. If the packet is

a data packet, the on-die controller determines the size of

the payload from the second flit. For read operations, the

data (or payload) is read out from the page register and

transmitted back to the flash controller.

In addition to the on-die controller, there is another logic

added at the flash controller referred to as the on-die data-

plane that includes additional buffers that we refer to as

V-page registers. In the baseline pSSD, this logic is not

needed; however, flash-to-flash connectivity is enabled with

a network (Sec V), the on-die data-plane effectively serves

as a “switch” for the flash-to-flash communication. Using

the additional dedicated V-page registers, the data plane can

provide a path for direct flash-to-flash communication.

3) Packet Overhead: An overview of control and data

packets is summarized in Fig 8. For communication across

8-bit signals, we assume a flit (or a flow-control digit [8])

is 8 bits and a packet consists of one or more flits. For

16-bit channels, two flits are sent together simultaneously.

Control packets include a different number of commands and

column/row addresses depending on the flash command [35].

Data packets are also multi-flit packets that include payload

size after the header flit. Both the control and data packet

length is variable and the actual length is detected by the

on-die controller using header information within the flash

memory. However, in any packetized interface, there exists

packet overhead since the unit of communication is packets,

not individual wires. As shown in Fig 8, packet header needs

to be the same size as a flit for both control and data packets

– thus, only 6 out 8 bits are actually used and results in 25%

overhead for the control packet header and 50% for the data

packet header. However, the total overhead for flash-channel

communication is relatively minimal because of the large

T: Type
00: Data packet
01: 1 cmd control packet
10: 2 cmds control packet

(a) Control packet format

C: # of column addresses
R: # of row addresses
U: unused

(b) Data packet format

Meta 
Information

Column address [7:0]    

1st Flash command

Row address [7:0] 

2nd Flash command

T C R U

(optional)
Payload 

…

00 D P

D: direction
0 : To flash memory
1 : From flash memory

P: unit of payload size
0: Byte 
1: Kbyte

Payload size 

u

…

Flash 
Command

Payload

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Column address [15:8] 

Row address [15:8] 

Row address [23:16] 

Figure 8: (a) Control packet format that is composed of

flash command and addresses, and (b) data packet format

for pSSD.

packet size (e.g., 16-64 kB) compared to the packet header

or the control packets that are communicated.

V. FLASH-TO-FLASH DATA MOVEMENT

Given the additional effective bandwidth from the pack-

etized interface, the pSSD described in the previous sec-

tion increased the flash channel interconnect bandwidth by

2×. An alternative approach is to keep the flash channel

bandwidth the same as the baseline SSD but use the addi-

tional bandwidth to create a network to provide connectivity

between the flash chips and created a packetized-network

SSD (pnSSD). In particular, we propose to add a vertical
flash-to-flash channel, that is exploited for parallel data-

transfer and direct communication between flash chips3. In

this section, we propose how the packetized SSD (pSSD) can

be extended to provide flash-to-flash connectivity and enable

data movement directly between the flash. In particular, we

show how a 2D bus topology can be applied to enable flash-

to-flash connectivity.

A. Limitation of Existing Network Topologies

Different topologies have been proposed for intercon-

nection networks, including network-on-chips and large-

scale systems [25] [21] [16] [24] [26]. Indirect networks

such as Fat-tree or hierarchical topologies with intermediate

switches are commonly used in high-performance comput-

ing; however, introducing an extra chip or a “router” in an

SSD is not feasible. In comparison, direct networks such as

mesh or torus networks are commonly used in network-on-

chip [32] [21] [39] [33] [4]. However, multi-hop presents

significant challenges in a network-on-SSD [38] as each

additional hop results in a significant increase in not only

latency but also cost (energy) from the I/O. In addition, the

pin bandwidth (or the number of channels) available on a

flash chip is rather limited, and partitioning it across multiple

channels (for example, 4 channels in a 2D mesh) would

significantly reduce the amount of bandwidth per channel,

3Flash chip-to-chip communication is only possible through vertical
channel-bus in our implementation since we define horizontal bus to be
used only for I/O handling while the vertical channels can be used for both
I/O and chip-to-chip data movement.
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Figure 9: Overview of different flash interconnects including

(a) packetized SSD (pSSD) with “fat” (16-bit) channel, (b)

channel sliced network with vertical bus channel to enable

flash-to-flash connectivity, and (c) the proposed packetized

network SSD (pnSSD) that provides connectivity of the flash

controller to vertical channels.

even if the packetized interface is leveraged. In this work,

we exploit the existing “bus” architecture that is used in

modern SSD but scale it to two dimensions to create a 2D

bus topology organization.

B. Omnibus Topology

In the pSSD architecture described in the previous section,

the increased bandwidth from the packetized interface was

leveraged to increase the flash channel bandwidth (Fig 9(a)).

However, instead of dedicating the bandwidth to the hori-
zontal flash channel, we partition the bandwidth to create

a vertical bus channel (v-channel) as shown in Fig 9(b).

As a result, all of the flash chips within the same row are

connected while the flash chips within the same column are

also connected. This provides direct connectivity between

flash chips (or enables flash-to-flash communication) while

maintaining the same total pin bandwidth compared to the

baseline SSD.

The v-channel provides connectivity between the flash

chips in the same column but has some fundamental chal-

lenges. For all SSD I/O traffic, the traffic originates from the

host (and the flash controller) but by slicing the bandwidth,

the bandwidth to/from the flash channel controller is reduced

by 2× – thus, reducing the overall I/O bandwidth by 2×,

compared to pSSD (Fig 9(a)). In addition, usage of the

vertical channels becomes a challenge. For example, most

of the “control” for the horizontal bus came from the flash

controller but that is not possible in Fig 9(b) as one of

the flash chips in each column needs effectively act as a

controller for each of the vertical channel buses (e.g., CE
signals need to be asserted by some logic communicating

between the flash memory chips).

As a result, we propose Omnibus 4 topology as shown

in Fig 9(c). Omnibus builds on a 2D bus organization

4The proposed topology is analogous to a double-decker bus where
there are two floors (or two “bus”) but a single, shared driver, or a single
controller

(a) pSSD (b) pn-SSD

V-channel

DRAM

A

B

C

A

B

C

2

1

DRAM

C଴CଵCଶCଷ
C଴CଵCଶCଷ

Control plane Data plane Control plane Data plane

Figure 10: Block diagram showing the benefits of path

diversity within the flash memory interconnect comparing

(a) pSSD and (b) pnSSD with the Omnibus topology orga-

nization. In pSSD, movement from A to B has to be done

through the flash controller and the internal DRAM while

in pnSSD, direct connectivity is provided.

but Omnibus exploits the fact that the flash controller pin

bandwidth is available with the packet interface, in Fig 9(b),

to add extra connectivity. Thus, each flash controller can use

the extra bandwidth to connect to one v-channel – and is

responsible for a single v-channel, in addition to the horizon-

tal flash channel bus. Unlike conventional interconnection

networks where each node provides “control” (e.g., routing,

arbitration, etc.), the proposed Omnibus topology enables

a split architecture – where the control plane (or the flash

channel controllers) is decoupled from the data plane (or

movement of data across/between the flash chips).

C. Data Plane – Path Diversity

In this work, we refer to pSSD with flash-to-flash con-

nectivity as packetized network SSD (pnSSD). Compared to

the baseline, the pnSSD based on the Omnibus topology pro-

vides the same bandwidth from the flash channel controller

as well as the flash memory chip compared to the pSSD.

The main difference is that the bandwidth is partitioned –

the flash chip bandwidth is partitioned across the horizontal

and the vertical bus channel while the controller bandwidth

is also partitioned across a single vertical and single hor-

izontal channel. Compared to pSSD, pnSSD provides two

advantages in terms of path diversity – direct connectivity

for flash-to-flash communication and multiple paths when

routing from the flash memory back to the flash controllers.

Examples of the potential benefits from the Omnibus

organization for pnSSD are shown in Fig 10. If a page from

A needs to be copied to B , in Fig 10, the page needs to be

moved from the flash memory, back to the controller (and to

the DRAM), before being copied to the destination in pSSD

(Fig 10(a)). However, with pnSSD architecture, the data can

be copied directly through the v-channels (Fig 10(b)). In

addition, when data needs to be read from C , in the baseline

pSSD, there is only one path through the horizontal bus.

However, with the Omnibus topology organization, the data

from C can be sent through the horizontal bus 1 or it can be
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routed vertically before being routed horizontally as shown

in 2 to provide path diversity (Fig 10(b)).

The path diversity can also be exploited by splitting a

message across the two paths. A page transfer from/to flash

memory is split into two halves (or the number of paths) to

utilize both the vertical and the horizontal channels. Since

the network (or channel bandwidth) is partitioned, separating

a packet to utilize the partitioned network is beneficial for

both latency and bandwidth – and batch the bandwidth of

pSSD.

D. Control Plane

As discussed earlier, the connectivity between the flash

memory serves as the “data” plane for data movement. In

comparison, the flash controller behaves as the “control”

plane in pnSSD. While a network is created among the

flash memory chips, each “node” in the network is mostly

used for the movement of data, and common control logic

(e.g., arbitration, routing logic, etc.) found in networks do

not exist within the data plane. In comparison, the control

logic is handled by the flash channel controllers to enable

not only read/write commands but also ensure path diversity

is exploited.

To enable flash-to-flash data movement, the control plane

(or the flash controllers) need to properly control or manage

the data plane and in particular, the v-channels, to ensure

proper data movement between the flash memory chips. As

described earlier, each flash controller is responsible for

a single (different) v-channel. As a result, a given flash

controller can play three roles within the control plane.

1) Source controller where the flash controller’s h-

channel is connected the source of the packet.

2) Destination controller where the flash controller’s h-

channel is connected the destination of the packet.

3) Intermediate controller where the flash controller’s h-

channel is not connected to either the source or the

destination of the packet; however, the packet needs

to leverage the v-channel of the flash controller.

An example of control plane for these three different cases

is shown in Fig 11, using flash controller 0 (C0) as an

example. 5 We assume C0 is responsible for the v-channel

shown and C0 can be the source controller (i.e., source flash

memory is connected to the h-channel that is connected to

C0), the destination controller, or an intermediate controller

such that it is not directly connected to either the source

or the destination – but is responsible for the v-channel

that connects the source to the destination. In Fig 11(a),

we assume C0 is the source and the destination is C1. The

control plane (through on-chip communication within the

SoC controller) works with C0 sending a request to C1 to

determine the status of the on-die data-plane buffer status.

C1 checks the buffer status and once the buffer is available,

5For simplicity, only a single column of flash memory is shown.
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Figure 11: Illustration of how the control plane works

between the flash channel controllers. For simplicity, only

one column of flash memory chip is shown. Three different

arbitration cases when controller C0 is (a) source, (b)

destination, and (c) an intermediate controller.

a grant is sent back to C0. C0 then accesses the v-channel 0

by asserting both vCE0 and vCE1 (v-channel Chip Enable)

signals and a page transfer (xfer) command is issued to

flash memory for the direct chip-to-chip data movement.

In Fig 11(b), we assume C0 is the destination while C2

is the source. Once a request is received from C2, the role

of C0 is to ensure that the chip enables (vCEs) are asserted

after on-die buffer status is identified from the flash memory

connected to C0. Then, the vertical channel can be leveraged

through a data transfer command from C2. In Fig 11(c), C0

is responsible for a flash memory that is neither the source

nor the destination but is simply an intermediate node (i.e.,

the source is C2 and destination is C3 but communicates

through the v-channel that is controlled by C0). The request,

in the control plane, starts in C2 and goes through C0

before reaching C3 – this ensures both source and destination

chips are properly enabled for the communication within the

network connected pnSSD architecture.

E. Routing/Deadlock and Scalability

While the data plane in pnSSD provides path diversity,

the routing is always minimal routing and a single-hop from

the controller to the flash memory. As a result, while either

the horizontal or the vertical channel might be utilized, the

communication packet never “holds” on to any resources

(e.g., channels or intermediate buffers [8]) If the 2D bus

structure is viewed as two dimension with h dimension

and a v dimension, the routing algorithm is effectively

a dimension-ordered routing [8] since h is always routed

before v – as a result, cyclical dependency does not exist,

and routing deadlock cannot occur.

In this work, we assume 8 flash-bus channels, each with

8 ways for the SSD system organization. However, for a

non-square organization (e.g., 4 channels with 4 controllers

but 8 ways), each controller needs to be responsible for two
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(c)

Figure 12: Illustration of how spatial GC works. When GC

is first triggered, (a) the flash memories on the left are I/O

group, continuing to service I/O requests while the flash

memory on the right (GC group) performs GC. Once GC is

finished, (b) all flash memories are used for I/O. When the

next GC is triggered, (c) the GC and I/O group are swapped

such that the other half of flash memories go through GC.

columns – thus, a single v-channel bus will need to inter-

connect two columns (or 2-ways) of the flash chips that are

connected by the horizontal bus. If there are more channels

than ways (e.g., 8 channels, 4 ways, and 8 controllers), half

of the controllers only control single h-channel while the

remaining controllers control both h and v-channels. Thus,

as the size of the network increases, the Omnibus can also

be scaled accordingly – as long as the bus can support the

number of ways required in the system.

VI. SPATIAL GARBAGE COLLECTION

In this section, we propose spatial garbage collection

(SpGC) that takes advantage of direct connectivity within

the packetized-network SSD (pnSSD). In particular, SpGC

enables garbage collection to occur simultaneously with I/O

requests but more importantly, by physically separating the

region of flash memory, the interference between the GC

and I/O can be greatly reduced while significantly reducing

the I/O tail latency.

As the capacity of SSD increases, more flash memory

chips (or ways) are attached to a flash memory channel.

As a result, the aggregate bandwidth of the flash mem-

ory connected to a flash memory channel can exceed the

bandwidth of the bus. Because of the higher (internal) flash

memory bandwidth, all of the flash memory connected to a

flash memory channel does not need to be fully utilized to

maximize flash memory channel utilization. In this section,

we propose spatial GC that services I/Os through a subset

of flash memory across the different flash memory channels

while GC is executed concurrently using the remaining

subset of flash memory. Note that the spatial GC can be

implemented on a conventional SSD architecture; however,

as we show later in Sec VII. the benefit of spatial GC is very

limited because of the flash memory channel contention.

M M MM

(b) Baseline spatial GC (c) pnSSD spatial GC

C Flash Controller Flash Memory

I/O data-path GC data-path I/O GC

(a) Baseline GC

C଴CଵCଶCଷ

C଴CଵCଶCଷ

C଴CଵCଶCଷ
Figure 13: (a) Baseline parallel garbage collection (GC), (b)

spatial GC on the baseline flash architecture without direct

connectivity between the flash memory chips, and (c) spatial

GC on pnSSD that has connectivity between flash memory

chips.

A. I/O & GC Groups

To support spatial GC, we define an I/O group as a

collection of flash memory chips that services I/O requests

for a period of time (or an epoch) and similarly, an GC
group as a group flash memory that performance GC. To

effectively utilize flash-bus channel bandwidth, an activation

group is composed of adjacent flash memory across all of

the different channels. An example of the two groups is

shown Fig 12(a) for an SSD system that consists of 16

flash chips. The left side 8 flash chips are grouped together

as part of the I/O group while the other half is grouped

to create a GC group. As a result, while the I/O group

handles I/O requests, the GC group performs GC through

the flash-to-flash connectivity in parallel – thus, minimizing

the interference between GC and I/O. By partitioning the

flash memory into groups, the I/O operations are separated

from GC but I/O is still able to fully exploit flash channel

parallelism and path-diversity of pnSSD.

Initially, all flash memory is utilized by the FTL until GC

is triggered. When GC begins, flash memories in the GC

group start to copy valid pages to another flash memory chip

located within the GC group. The FTL finds victim blocks

from the flash memory within the GC group and to avoid

h-channel contention with I/O traffic, the destination free

blocks are restricted to the flash memory in the same way

(or column). After GC is finished, the FTL returns to utilize

all of the flash memories for the incoming I/Os (Fig 12(b)).

When the next iteration of GC is triggered, FTL swaps the

GC group and the I/O group (Fig 12(c)) – to uniformly

increase the age (or P/E cycles) of the flash memory.

During GC with spatial GC, the interference between GC

and write I/O operations are completely removed since the

physical location for write operations is determined by the

FTL and can be allocated to the I/O group (and not the

GC group). However, interference with I/O group cannot

be completely removed since if the address of the read
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Simulation Parameters

Simple-SSD PCIe 4.0 x4 lanes, system-bus=8GB/s (×1), DRAM=8GB/s
organization 8 channels 8 ways 1 die, 4 planes 1024 blocks 512 pages

baseline flash bus transfer-rate = 1000MT/b/s, width = 8 bits
pSSD flash bus transfer-rate = 1000MT/b/s, width = 16 bits

pnSSD # of v-channels = 8, v-channel width = 8bits

Flash Memory read=3us, write=50us, erase=1ms, page size=16KB

Table II: Simulation parameters

operation is located within the GC group, there will be

interference between the I/O and GC. For simplicity, we

partition the flash memory into two equal size groups for I/O

and GC; however, the size of the GC group can be reduced

– e.g., 1/4 of the flash memory can be GC group while 3/4

of the flash memory can be part of I/O group. This partition

can lead to more frequent GC but potentially at the benefit

of improved read performance.

B. Concurrent I/O and GC

The difference between baseline GC (parallel GC) and the

proposed spatial GC is shown in Fig 13. When parallel GC

is used, all flash memory can perform GC to simplify the GC

process (Fig 13(a)); however, I/O cannot be serviced during

GC. In comparison, spatial GC described earlier can be

implemented on the baseline SSD architecture (Fig 13(b)).

Baseline spatial GC enables the flash memory conflicts to be

avoided by spatial separation – however, I/O and GC utilize

the same flash memory channels and the conflict moves

from the flash memory to the flash memory channels to

create interference. In comparison, pnSSD with the Omnibus

topology can minimize the interference between I/O and GC

by leveraging the vertically connected channels (v-channel)

(Fig 13(c)). I/O requests are serviced not only by horizontal

channel but can also leverage the v-channels on the left side

or within the I/O group. At the same time, page copies for

GC are executed by the right GC side of the flash memory

through v-channels within the GC group. As a result, the

I/O requests and GC execute concurrently while minimizing

interference.

VII. EVALUATION

A. Methodology

To evaluate the benefits of packetized SSD, we used a

SimpleSSD-standalone [12] simulator that models NVMe,

FTL, and flash-bus/memory. We used representative work-

load traces [40] [3] and selected workloads with different

ratios of read/write accesses and different access patterns.

We modified the simulator to implement the Omnibus topol-

ogy as described earlier in Sec V as well as the packetized

interface. In addition, we modified GC victim selection and

free page allocation in the FTL to model spatial GC. We

used all flash memory for GC in parallel and the number of

victim blocks in spatial GC is the same as the baseline.

The baseline GC that we compare against is PaGC [37].

We assume I/O and GC group consists of 32 flash memory

Acronym Description

baseSSD Conventional SSD

NoSSD (pin-constraint) Network-on-SSD [38] with 2bit channel on mesh
NoSSD (no constraint) Network-on-SSD [38] with 8bit channel on mesh

pSSD Packetized SSD (Sec IV)
pnSSD pSSD with Omnibus topology (Sec V)

pnSSD (+split) Split technique is applied on pnSSD

Table III: Description of different SSD architectures evalu-

ated.

chip. Since only half of the flash memory is used for GC

with SpGC, the number of victim blocks per flash die is

increased by 2× to match the total number of selected

victim blocks as the baseline GC. For the baseline GC,

greedy policy is used to select the victim block and the free

block selection is done randomly across the 64 flash memory

chips. Details of other parameters used in the evaluation

are summarized in Table II. We used ULL (Ultra Low-

Latency) parameters [5] for the flash memory parameters

and the bandwidth of NVMe, system-bus, and DRAM are

provisioned to equal the total flash bus channel bandwidth

to provide sufficient bandwidth for each component within

the SSD controller system.

The different SSD architectures that we compare in this

work are summarized in Table III, which includes the pSSD
and pnSSD with the Omnibus topology, as well as the

conventional baseline SSD (baseSSD) with conventional

bus structure for the flash memory interconnect and dedi-

cated control signaling. We also compare with NoSSD [38]

where a 2D mesh network was used to interconnect the flash

memory device. We evaluate two implementation of NoSSD
– NoSSD (pin-constraint) where the pin constraints are held

constant compared to all of the alternative designs compared

in Table III, resulting in 2-bit data channels, as well as

NoSSD (no constraint) without pin constraints such that each

channel bandwidth is constant compared to baseSSD (i.e.,

8-bit data channels). For these architectures, we also add

SpGC to evaluate the impact of spatial GC. We also evaluate

the performance impact from split that was described

earlier in Sec V-C.

B. I/O Performance

We first evaluate the performance benefits of pSSD and

pnSSD. To understand the general I/O performance im-

provement, we first simulated without triggering GC while

executing workload traces [40] [3]. Fig 14 shows the average

I/O latency improvement normalized to baseSSD. pSSD
and pnSSD shows 69% and 60% improvement, compared to

the baseSSD. The packetized SSD (pSSD) shows slightly

better performance than simple pnSSD (9%) on average.

Both pSSD and pnSSD provide the same amount of band-

width to the flash controller; however, while pSSD uses the

entire bandwidth for the h-channels, pnSSD partitions the

bandwidth between the h-channel and the v-channel. pSSD
achieves higher utilization of the flash memory channels,
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Figure 14: Normalized I/O performance (average I/O la-

tency) improvement in workload trace when garbage col-

lection does not occur.

compared to pnSSD, since an adaptive decision needs to

be made for pnSSD – determining whether to use the h-

channel or route through the v-channel. In this work, we

assume a greedy approach where the first available channel

is used – thus, it can lead to non-optimal routing decision.

It remains to be seen if an intelligent adaptive algorithm

can be exploited to improve channel utilization and overall

performance. The performance of pnSSD can be improved

with split (Sec V-C) where a page is split in half and

transmitted across both paths. As a result, pnSSD (+split)

results in 82% performance improvement – exceeding the

performance of pSSD (by 13%) through improving channel

utilization of the flash channel interconnect and effectively

reducing the I/O latency.

We also compare to Network-on-SSD [38] (NoSSD).

Since a 2D mesh topology requires 4 bidirectional channels,

the amount of bandwidth per channel is significantly reduced

when considering the pin-constraints. As a result, NoSSD

(pin-constraint) results in approximately 4× performance

degradation compared to baseSSD on average. To under-

stand the benefit of path-diversity from the mesh topol-

ogy, the channel bandwidth of NoSSD is (unrealistically)

increased to be the same as pnSSD (i.e., 8 bits per channel)

shown as NoSSD (no-constraint) – resulting in signifi-

cant performance improvement compared to NoSSD (pin-

constraint) and exceeds baseSSD I/O performance by 40%.

However, even though NoSSD (no-constraint) effectively

increases the pin bandwidth by 4× compared to pnSSD,

pnSSD is able to improve performance over NoSSD (no-

constraint) by 30% since the 2D mesh topology is edge

asymmetric topology – thus, the performance bottleneck are

the mesh channels near the flash controllers since all I/O

traffic source (or destination) is the flash controller.Fig 15

shows throughput (KIOPS) results for the trace workloads.

On average, pSSD and pnSSD (+split) outperform NoSSDs

by resulting in 69%, and 82% improvement in throughput,

comapred to baseSSD. pnSSD (+split) shows 13.5× higher

throughput compared to NoSSD (pin-constraint).

Synthetic Analysis: To further understand the perfor-

mance benefit of the pSSD and pnSSD, we evaluated latency

and bandwidth using synthetic workloads by increasing

the number of I/O requests. An I/O request is 64KB and

0

10

20

30

40

50

RocksDB-0 usr1-0 gsf-0 ug-0 usr2-0 moodle-0 backup-0 geomean

Th
ro

ug
hp

ut
(K

IO
P/

se
c)

baseSSD NoSSD (pin-constraint) NoSSD (no constraint) pSSD pnSSD (+split)

Figure 15: Throughput comparison of the different SSD

architecture.

multi-plane commands are used to maximize flash memory

bandwidth. Fig 16 shows the results for sequential and

random access pattern for both read and write accesses. The

x-axis is the number of concurrently running I/Os on SSD

and it is increased up to 64 which matches the total number

of flash memory devices in our evaluation.

The interleaving of accesses across the flash memory

depends on the page allocation policy of the FTL. PCWD

(plane, channel, way, die) is assumed for the results in Fig 16

where channel-level parallelism is prioritized. Since the

allocation policy results in load-balanced access across the

channels, there is no load-imbalance and thus,pSSD provides

the best performance (or the lowest latency) – approximately

2× reduction in latency compared to baseSSD. pnSSD
(+split) also has limited benefit, compared to pnSSD since

the accesses are load-balanced. However, for the PWCD

interleaving that prioritizes ways (or dies in the same

channel) (Fig 17), pnSSD (+split) results in not only the

same latency as pSSD, but also shows better performance

when the number of concurrent I/Os is less than 32 since

pnSSD can load-balance by exploiting the path-diversity. As

a result, pnSSD performance is less sensitive to the access

pattern (or page allocation scheme) because of its ability

to load-balance. NoSSD achieves similar performance as

pnSSD when the number of I/O requests are small. How-

ever, this assumed approximately 4× higher bandwidth was

available for NoSSD compared to pnSSD. As the number

of concurrent I/O requests increases, NoSSD suffers from

network congestion near the flash controllers and results in

significantly higher latency.

C. I/O and GC Interference

The benefit of the pnSSD over pSSD is in the decoupling

of I/Os from the GC. Fig 18 shows I/O performance im-

provement when GC is performed (or triggered) while I/Os

are being serviced. The benefits of spatial GC is relatively

small when used with baseSSD (up to 16% improvement)

or pSSD (59% for Read, 95% for Write) since the flash

memory bus channel is shared between GC traffic and

I/O traffic. However, pnSSD (SpGC) shows much higher

performance improvement – approximately 5× increase on

average since GC path is isolated from the I/O access path.

We evaluate the impact of GC interference on real work-

load traces in Fig 19 and compare against alternative GC
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Figure 16: Sequential and random Read/Write syn-

thetic workload performance with Plane-Channel-Way-Die

(PCWD) page allocation scheme that balances I/O traffic

across the different flash memory channels.
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Figure 17: Sequential and random Read/Write syn-

thetic workload performance with Plane-Way-Channel-Die

(PWCD) page allocation scheme that creates more unbal-

anced I/O traffic across the flash memory channels.

algorithms, including parallel GC (PaGC) [37], preemptive

GC [29], and spatial GC that we propose in this work.

Fig 19 shows how pnSSD improves I/O performance over

the baseSSD and pSSD by 9.7times, 5.9times on average,

respectively. In general, preemptive GC performs well if

there are “idle” times when there are no I/O requests – for

such workloads, the performance benefit can be significant.

However, for other workloads, preemptive GC needs to find

such idle time and if it is not available, GC cannot be

postponed indefinitely and thus, cause performance degra-
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Figure 18: I/O performance improvement normalized to

baseSSD with PaGC, on synthetic evaluations when GC

is triggered.

dation for I/O traffic. The pnSSD architecture benefits both

preemptive GC as well as SpGC. However, SpGC is able to

provide better isolation between GC traffic and I/O traffic

– and thus, on average, SpGC exceeds the performance of

preemptive GC by 47%.

Fig 20(a) shows the tail-latency results of the RocksDB-0

trace, and at 99-percentile, the pnSSD (SpGC) significantly

outperforms baseline and pSSD (SpGC) by reducing tail-

latency 18.7×. Even though pnSSD attempts to separate the

GC traffic from the I/O traffic, there is still some interference

when the read I/O destination is located within the GC group

during spatial GC. As a result, such unavoidable interference

results in longer latency from the flash memory conflict itself

and leads to some increase in the tail latency.

We also measured GC elapsed time, and the GC time

does not necessarily impact the I/O performance in pnSSD
(unlike baseSSD), however, reducing the GC time is pre-

ferred to minimize flash conflict from unavoidable read

I/Os. The number of page copies is doubled for spatial GC

since only half of the flash memories are used for GC.

However, baseSSD (SpGC), pSSD, and pnSSD results

in lower GC time compared to baseSSD (Fig 20(b)).

The reason for the improvement (or the reduction of) GC

time for baseSSD (SpGC) is mainly from the reduced

flash memory channel-bus contention for page copies itself,

since half of the flash memory copies through the flash

channels while the other half services I/Os. In addition,

the increased effective bandwidth of the flash-bus channel

reduces flash-bus contention as shown in the pSSD (SpGC).

More interestingly, the pnSSD utilizes a quarter of the total

channel bandwidth for GC since pnSSD only uses vertical

channels on the half of the flash memory. However, the GC

time is also reduced because the number of data-transfer

is also reduced by half by directly communicating between

flash memory (instead of communicating through the flash

controller).

VIII. DISCUSSION

Cost: The two components that are modified in pnSSD are

the flash channel controller and the flash on-die controller.

The flash channel controller logic is simplified since the

logic to generate signals (e.g, ALE, RE, etc.) is moved to

the on-die controller and replaced by packet interface logic.
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SSD architectures with baseline GC, preemptive GC, and
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Figure 20: (a) Tail latency comparison across different SSD

implementations for the RocksDB-0 trace and (b) average

garbage collection (GC) execution time across all of the

traces.

The main source of cost (overhead) in the flash memory

side is the on-die controller and for pnSSD, the “on–die d-

plane” logic that is dominated by the extra register added

(v− page buffer in Figure 7(c)) that requires two additional

16kB page buffers. Given that the recent flash memory die

is approximately 100mm2 (66% for cells, 20% for peripheral

circuits, and 14% for the page buffers) [18], we estimate

that the overhead of the on-die controller logic can be

approximately 20% increase in area, which includes the

additional logic summarized earlier in Figure 7). However,

recent flash cells are 3D devices such that peripheral logic

is placed underneath the cells through Peri Under Cell

(PUC) or Cell over Peri (COP) technique [15] – thus, the

increase in the logic that we introduce from pnSSD does

not necessarily impact overall flash memory size for PUC

devices as the additional logic can be hidden under the cell

structures [15] [36].

On-die ECC functions: When page data is directly

transferred from a flash chip to a flash chip, one potential

problem is error correctness. In modern SSD, the ECC

engines are often located within the flash controller [42]

and thus, error propagation can occur. On-die (flash chip)

ECC ability has been introduced earlier to exploit internal

copy-back operations [14]; however, as the flash memory

became more unreliable with the multi-level cell flash, on-

die ECC was no longer effective [42]. To enable flash-to-

flash page copy without sending data through the ECC logic

in the flash controllers, one potential solution is hierarchical

ECC that implements strong ECC logic (e.g., LDPC) in

the flash controllers while offloading weaker error detection

logic to on-die ECC to enable a cost-efficient solution for

flash-to-flash data movement – effectively realizing a hybrid

ECC [13].

Impact on FTL complexity: The Omnibus topology (or

pnSSD) does not impact the FTL since once the logical-to-

physical address translation is done, the packets are “routed”

with the pnSSD architecture. Since one of the main roles of

FTL is garbage collection (GC), spatial GC (SpGC) requires

some support from the FTL. In particular, the FTL needs

to be aware of which group of chips are used for I/O

(i.e., activation groups) and which group is used for GC.

In addition, a write policy needs to be modified such that

writes are restricted to the activation group with SpGC. As a

result, the proposed pnSSD (and SpGC) has minimal impact

on the FTL complexity.

IX. CONCLUSION

In this work, we proposed packetized SSD (pSSD) to

effectively utilize flash channel bandwidth by converting

designated signal-based interface to a packet-based commu-

nication where “packets” instead of dedicated control/wires

are used for communication between the flash channel

controllers and the flash memory chips. Based on pSSD,

we enable flash-to-flash connectivity to create a packetized

network SSD (pnSSD. We exploit the connectivity through

a 2D bus-based topology and propose the Omnibus network

organization for pnSSD. The pnSSD enables spatial garbage

collection (SpGC) that minimizes I/Os and GC interference

by separating I/O and GC data path. Our evaluations show

that pnSSD results in 82% I/O performance improvement

when there is no GC and improvement of 9.71× average

I/O latency when there is interference between GC and I/O

traffic.
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