Decoupled SSD: Rethinking SSD Architecture through
Network-based Flash Controllers

Jiho Kim Myoungsoo Jung John Kim
School of Electrical Engineering School of Electrical Engineering School of Electrical Engineering
KAIST KAIST KAIST
Daejeon, Republic of Korea Daejeon, Republic of Korea Daejeon, Republic of Korea
jihokim @kaist.ac.kr mj@camelab.org jik12@kaist.edu

ABSTRACT

Modern NAND Flash memory-based Solid State Drives (SSDs)
are designed to provide high-bandwidth for I/O requests through
high-speed NVMe interface and increased internal flash memory
bandwidth. In addition to providing high performance for incoming
I/0 requests, the flash translation layer (FTL) also handles other
flash memory management processes including garbage collection
that can negatively impact I/O performance. In this work, we ad-
dress how the sharing of system resources (e.g., system-bus and
DRAM) for I/O requests and garbage collection can cause inter-
ference and performance degradation. In particular, we propose to
rethink SSD architecture through a Decoupled SSD (dSSD) system
that decouples the front-end (i.e. cores, system-bus, DRAM) with
the back-end (i.e. flash memory). A flash-controller network-on-chip
(fNoC) that interconnects the flash controllers together is introduced
to enable decoupling of the I/O path and garbage collection path
to improve performance and reliability. dSSD enables advanced
commands such as copyback command to be exploited for efficient
garbage collection and we propose to extend copyback command
with global copyback through the fNoC. To improve reliability, we
propose to recycle superblocks through superblock recycle table
within the flash controller. Without any modification to the FTL, a
hardware-based offloading mechanism within the flash controller
of the dSSD is proposed to dynamically re-organize a superblock.
Our evaluations show that decoupled SSD results in up to 42.7% 1/O
bandwidth improvement and 63.8% GC performance improvement,
while achieving approximately 31.4X improvement in tail-latency
on average. Dynamic superblock management through the dSSD
results in approximately 23% improvement in lifetime with minimal
impact on performance and cost.

CCS CONCEPTS

* Computer systems organization — Interconnection architec-
tures; * Information systems — Storage architectures.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

ISCA 23, June 17-21, 2023, Orlando, FL, USA

© 2023 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 979-8-4007-0095-8/23/06...$15.00
https://doi.org/10.1145/3579371.3589096

KEYWORDS

Solid-state drives, flash controller, garbage collection, on-chip net-
work, superblocks

ACM Reference Format:

Jiho Kim, Myoungsoo Jung, and John Kim. 2023. Decoupled SSD: Re-
thinking SSD Architecture through Network-based Flash Controllers. In
Proceedings of the 50th Annual International Symposium on Computer Ar-
chitecture (ISCA ’23), June 17-21, 2023, Orlando, FL, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3579371.3589096

1 INTRODUCTION

The bandwidth of NAND flash memory-based Solid State Drive
(SSD) has increased with the improvement of flash memory
technology and high-speed I/O host-interface [8]. To support
high-bandwidth of read/write I/O requests, internal parallelism of
an SSD is exploited (e.g., multi-channels, chips, dies, etc.) and
multi-plane commands [35] enable additional bandwidth through
the multiple (parallel) planes. As I/O input bandwidth continues
to increase and result in more I/O requests, more external data
movement occurs in the SSD — i.e., data within the SSD is moved
to/from the host. In addition to external data movement, internal
data movement can occur in SSD when garbage collection (GC)
occurs and valid pages are copied to the destination free-blocks,
and data movement is constrained to be within or internal to the
SSD. However, GC uses the same system resources as [/O requests,
including the core, DRAM, and the system bus and the conflicts
between the two types of data movement can cause interference and
impact overall SSD performance and throughput.

To address interference between GC and I/O, most prior work ad-
dressed the flash memory conflicts [17, 24, 35, 42] as the flash mem-
ory bandwidth was often the bottleneck. However, system resource
(especially the system bus) is becoming a more critical bottleneck
as the number of planes and/or the unit of data transfer per plane
increases.! This not only increases flash memory parallelism (and
bandwidth) but it also impacts system resource utilization, in partic-
ular the system-bus, as the I/O requests can be heavily impacted by
garbage collection. In this work, we show this performance bottle-
neck is caused by a tightly coupled modern SSD system between the
“front-end” or the system resources (i.e., system bus, DRAM, etc.)
and the “back-end” or the flash memory chips. For example, when
data transfer or copy is done for garbage collection, it consists of
chip-to-chip (or die-to-die) data movement; however, the valid pages
are sent to the system components (e.g., DRAM and ECC) through
system-bus before arriving at their destination flash memory.

!Ultra-low latency (ULL) flash [6] have 2 or 4kB page size with 8 (or 16) planes while
recent T/QLC [13] page sizes are 16 or 32KB and have 2 (or 4) planes.

https://doi.org/10.1145/3579371.3589096
https://doi.org/10.1145/3579371.3589096
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589096&domain=pdf&date_stamp=2023-06-17

Host
Interface
Host CPU (e.g., PCle)
—
——
Flash [W W t
Memory Mg e
Flash SSD Controller
C Controller nl SSD

Figure 1: Data movement during the execution of garbage col-
lection (GC) in modern SSD systems.

To overcome this bottleneck, we propose to rethink the design of
SSD architecture through the decoupled SSD system where the front-
end is decoupled from the back-end or the flash memory chips [21].
With the introduction of a decoupled flash controller, the decoupled
SSD minimizes data movement during garbage collection as the
front-end SSD resources are not utilized. In addition, we propose a
dedicated flash controller network-on-chip (fNoC) that interconnects
the flash controllers together. The decoupled SSD (dSSD) and the
fNoC enable new opportunities in the design of the SSD controller
as the back-end is “decoupled” and operates independently of the
front-end. As a case study, we demonstrate how advanced commands
such as copyback can be implemented with dSSD. Copyback com-
mands [12, 31] usage is very limited in modern SSDs because of
error propagation during the copy (or a read followed by a write).
By decoupling the SSD, copyback commands are now handled by
the flash controller and enable error check (and correction) for copy-
backs. In addition, existing copyback commands are effectively local
copyback since copies occur within the same plane (die). However,
the fNoC provides a mechanism to “route” data to not only enable
local copyback but we propose global copyback where the destina-
tion of the data transfer can be located on the same flash bus channel
or located across different channels to increase the flexibility of
copyback.

We also propose how superblock reliability can be managed in
a dSSD through the decoupled flash controller. In particular, we
propose dynamic superblock management through recycled blocks
— i.e., when bad blocks occur within a superblock, instead of dis-
carding the entire superblock, the remaining good blocks within the
superblock are reused or recycled to improve SSD reliability. This
improvement in reliability does not require any support from the
FTL but is achieved through the dSSD architecture through extra
mapping tables within the decoupled flash controller of the dSSD. In
summary, the main contributions of this work include the following.

e We propose Decoupled SSD (dSSD) that decouples the front-
end of the SSD controller with the back-end that consists
of the flash channel/chips in an SSD. In particular, a flash
controller network-on-chip (fNoC) is introduced to enable
flash-to-flash communication.

o By exploiting the flash-to-flash connectivity and the decou-
pled controller, we propose how advanced copyback com-
mand can be enabled to minimize data movement for garbage
collection while reducing interference with I/O traffic.

e We propose dynamic superblock organization to improve reli-
ability through remapping tables placed within the decoupled
flash controllers by introducing recycled blocks.

2 BACKGROUND

In this section, we provide a background on modern SSD that consist
of not only the SSD controller and flash memory but also the flash
translation layer (FTL). In particular, we describe how modern SSDs
are effectively “coupled” architecture between the front-end that
consists of core/DRAM/system-bus and the back-end that consists
of the flash memory chip. In addition, FTL is a critical component
in modern SSD but as reliability challenges continue to increase
in modern SSD, prior work often requires FTL support to improve
reliability and further increase FTL complexity. In this work, we
show how decoupled SSD can improve reliability without support
from FTL by exploiting the decoupled flash controller.

2.1 SSD Architecture

A modern SSD controller consists of multiple subsystems including
host interface, multi-cores, memory, error correction code (ECC),
system-bus, and multiple flash controllers as shown in Fig 1. The
host interface (e.g., NVMe) controller receives the arriving I/Os, and
interprets the commands according to the protocol. Recent interface
protocols, such as NVMe, have increased SSD 1/0O bandwidth and
the number of concurrent I/O requests. SSD controllers often ex-
ploit multi-cores to provide high performance [16, 33, 41, 44]. A
significant fraction of DRAM is used as a write-buffer cache [20]
by the firmware (or FTL) to hide the relatively slow flash memory
latency/bandwidth. The DRAM is also used to store mapping ta-
ble [18, 25] and meta-data of flash block/pages. The ECC engines
detect (and possibly correct) bit errors of pages that have been read
for both I/O and garbage collection. Depending on the ECC algo-
rithm and the implementation, a single ECC engine can be placed
per flash controller or multiple flash controllers can share a single
ECC engine. The different components in the SSD controller are
interconnected by a system-bus (e.g., AXI [1]).

2.2 Flash Translation Layer (FTL)

FTL is the software layer within the SSD controller that consists of
I/O request handling (including address translation), garbage collec-
tion, and wear-leveling. The role of FTL in an SSD architecture has
become more significant as the amount of I/O requests (and band-
width) increases and creates more external data movement. However,
internal flash management such as page-allocation, garbage collec-
tion, wear-leveling, and bad block management also needs to be
managed by the FTL. In particular, FTL is responsible for internal
data movement during garbage collection.

I/0 Request Handling: After the I/O requests arrive and are pro-
cessed by the host interface, the FTL determines whether the re-
quested data is in the DRAM buffer cache. The DRAM and system-
bus are utilized if I/O requests result in a hit. If there is a miss, the
FTL translates the logical page number (LPN) of the requests to
a physical page number (PPN) based on mapping table [18, 25].
The FTL then issues the requests to the appropriate flash controller
across the different channels and the system-bus is still used as the
I/0 requests move to/from flash memory.

10

15

10
=
E= £ 8 My GC 10Ps "
T =t - H 16
S5 6 25 6 v o
o2, GC T N, =
£ &5 ¢ 05
892 - a<= 2
o o Q o 0
= 0 100 200 300 400 500 600 700 800 — 0 100 200 300 400 500 600 700 800
Time (ms) Time (ms)
(a) Low bandwidth (b) High bandwidth
——1/0 ——GC ——1/0 ——GC

Sc Sc
25 1 a0 !

S 08 S 08
ET o6 EBos
8= 04 2 04
2502 A5 02
n 0 0

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Time (ms) Time (ms)

(c) Low bandwidth (d) High bandwidth

Figure 2: (a,b) I/0 bandwidth and (c,d) system-bus utilization
with low/high-bandwidth scenario on ultra-low latency device.
The horizontal GC arrows show when GC occurs.

Garbage Collection: Garbage collection is a critical component in
SSD to optimize storage space as writes are done at page granularity
which is much smaller than the block granularity used for erase
operations [17]. When the amount of remaining free blocks is less
than a predetermined threshold value, FTL starts garbage collection
by allocating a new physical page from the active free block, moving
valid pages from the victim blocks to free or new blocks and FTL
invalidates the pages in the victim block. Afterward, GC erases the
victim blocks to optimize storage space. Different algorithms have
been proposed to select the victim blocks and the free blocks, with
trade-offs in performance [42] and reliability [36]. If the free block
chosen is within the same plane as the victim block local, advanced
copyback command [31] can be exploited to avoid transferring data
outside of the flash memory chip. However, copyback commands
cannot be used in modern SSDs because of error propagation since
error correction capability is limited within the flash memory.

Error Handling: Multi-level cells (T/QLC) have effectively in-
creased flash memory density by sacrificing performance [19]; how-
ever, it has also increased the Raw Bit Error Rate (RBER) by cre-
ating additional reliability challenges in read [3],write [5], and re-
tention [4]. While advanced ECC algorithms (e.g., LDPC) are used
in SSD [45], the impact from process variation [15, 28, 40] has a
significant impact on flash endurance and alternative approaches to
improve endurance have been proposed [15, 27, 28]. However, prior
work often requires support from the FTL which increases the FTL
complexity. In this work, we exploit the decoupled flash controller
to improve superblock management without any FTL support.

3 MOTIVATION: CASE FOR DECOUPLED SSD

A high-level overview of data movement during garbage collection
(GC) in modern SSD systems is shown in Fig 1. The flash controller
sends read commands to the appropriate flash memory die and the
valid pages are read out, go through error detection (and possibly
correction) (Fig 1 D), before being sent through the system bus 2
and written out to the DRAM memory (Q). Afterward, FTL issues
write operation to the flash controller and transfer the pages to the

2In this work, we refer to the system bus as the bus within the SSD controller that
interconnects the flash controllers, core, and other components within the SSD controller
(Figure 1).

destination flash die by sending write commands to the flash memory
chips (®). GC operation is essentially a “back-end” operation that
requires the movement of data between different flash memory chips.
However, modern SSD systems utilize the front-end, including the
system bus and DRAM, during GC, and as a result, GC can interfere
with I/O requests.

The performance impact of GC on the I/O requests is shown
in Fig 2(a,b) where the I/O bandwidth, defined as the amount of
bandwidth provided to the I/O requests is shown on the y-axis.
The x-axis is time and we measure I/O bandwidth every 1 msec to
observe the change in the I/O bandwidth. We simulate an SSD system
based on a ULL device [6] (evaluation setup is described in Sec 6)
and evaluate the impact of GC on I/O requests. We used greedy,
global free block selections for our evaluation and all flash memory
executes GC in parallel. The system-bus bandwidth is modeled
as 8GB/s and is equal to the aggregate bandwidth of all flash bus
channels. The WRITE bandwidth of an individual flash chip with
1 plane is 51.2 MB/s and 409.6 MB/s for 8§ planes. The results are
shown for a synthetic workload that consists of 4KB (as well as
32KB) sequential write I/O requests with an outstanding request
queue depth of 64. The 4KB access is used to evaluate a “low
bandwidth” scenario since only one out of the eight planes is utilized.
In comparison, 32KB access results in all 8 planes being accessed
using multi-plane commands to model “high bandwidth.”

For low bandwidth (Fig 2(a)), approximately 3 GB/s of I/O band-
width is sustained initially, equivalent to 51.2 MB/s X 8 channels X
8 ways; however, the I/O bandwidth drops after the GC is triggered.
During GC, a limited amount of I/O requests are processed. Similar
behavior can be observed for “high bandwidth” (Fig 2(b)) but the
drop is more significant since higher bandwidth of the flash memory
is used with multi-plane commands. The maximum bandwidth that
can be achieved is approximately 8 GB/s which is equivalent to
the system bus bandwidth. It is well-known that GC can interfere
with I/O requests [17, 42]; however, as the flash memory bandwidth
increases (e.g., exploiting multi-plane in modern SSD devices), the
impact of system resources (such as the system-bus) becomes more
critical. To understand the impact, we plot the corresponding system-
bus utilization in Fig 2 (c,d). When GC is active, the system bus
utilization for I/O requests drops; however, the drop in utilization is
more significant for the high-bandwidth scenario and the system bus
becomes a point of contention between I/O and GC within the SSD.

One potential approach to reduce the impact of interference is to
increase the amount of system bus bandwidth. While this can im-
prove performance, it does not fundamentally decouple the front-end
(or the SSD controller-side) and the back-end (i.e., flash memory)
as the data movement still occurs through the system-bus/DRAM
(Fig 1). In this work, we propose a decoupled SSD architecture with
the following objectives:

e Minimize data movement: Flash-to-flash data movement
for GC involves both the system bus and DRAM in modern
SSD. Decoupled SSD minimizes data movement by providing
direct flash-to-flash communication.

o FTL Complexity: As the complexity of FTL continues to
grow [33, 44], decoupled SSD enables some flash manage-
ment to be offloaded to the decoupled controller to reduce the
complexity of the FTL.

— —
Read Write

Address translation |\ Offload

Garbage coll:

Reliability mgmt.

SSD
Controller side |

Decoupled

Flash

Controller

Figure 3: High-level block diagram of proposed decoupled
SSD (dSSD). The main added components are the decoupled
controller(Cp) and the flash controller network-on-chip (fNoC).
(F: Flash Memory)

e Offloading opportunities: Advanced commands (such as
advanced copyback command) can be implemented or “of-
floaded” to the decoupled controller. In addition, efficient
super-page management can be handled by the decoupled
controller, without support from the FTL.

To achieve the objectives outlined, the proposed decoupled SSD is
based on the following two principles. First, minimize the impact
on FTL while offloading functionality to the decoupled controller 3,
The second principle is to isolate or separate the I/O requests and
internal data movement (e.g., GC) as much as possible through a
separate dedicated flash controller network-on-chip.

4 DECOUPLED SSD (dSSD) ARCHITECTURE

In this section, we first describe how data movement is minimized by
offloading data copy for GC to the flash controller by providing direct
data movement between flash memory through the flash controllers.
We also describe the dSSD microarchitecture, the flash controller
network-on-chip (fNoC) to interconnect the controllers together, as
well as the global copyback command that is enabled by dSSD.

4.1 Decoupled SSD Architecture

A high-level overview of the proposed decoupled SSD architecture is
shown in Fig 3. The main hardware changes are the decoupled flash
controller (Cp), and an on-chip hardware router to enable controller-
to-controller communication. Since all controllers are located within
the same chip [29], a flash-side network-on-chip (fNoC) is intro-
duced that enables direct communication between flash memory
chips across different flash channels. As a result, the flash memory-
side (or the “back-end”) is effectively decoupled from the SSD
controller side (or the “front-end”) through the decoupled flash con-
troller (Cp) and fNoC. More importantly, it reduces contention for
shared resources, including the system-bus and the memory, when
I/0 requests and page copies for GC are handled simultaneously.
An example of flash-side data movement (or copy) is shown
in Fig 3. The flash controller reads out pages from a target flash
die/blocks as shown in Fig 3(D. However, instead of transferring the

3Note that changes from dSSD are mostly transparent to FTL, aside from supporting
copyback commands. However, dSSD does not restrict any flexibility of the FTL.

pages through the system-bus, the pages are stored temporarily in the
decoupled flash controller, and error check/correction is performed
by the integrated ECC engine. The pages are then sent to the destina-
tion across the fNoC that interconnects flash controllers as “packets”
and arrives at the destination (Fig 3 Q). After arriving at the desti-
nation flash controller, the pages are written to the destination flash
die/blocks through the flash bus channels (Fig 3 ®).

A detailed block diagram of a decoupled flash controller (Cp)
is shown in Fig 4. The diagram includes components that exist
in conventional flash controllers, including the channel command
controller, command queue, page buffer, and bus/NAND interface.
The I/O commands (i.e., read/write) are received through the bus
interface and queued in the command queue while the data (for a
write) is queued in the page buffer. The channel command controller
interprets the commands and receives the data into one of the page
buffers [37] 4. The channel command controller then generates a
sequence of low-level commands to the flash memory and transfers
the commands and data (if necessary) to the flash memory accord-
ing to the low-level flash interface protocol (e.g., ONFI [31]). In
our proposed dSSD, the datapath used for the I/O commands is the
same as the conventional SSD. Additional changes to the flash con-
troller includes the addition of ECC logic that is incorporated into
the controller, the decoupled buffer (dBUF) for flash-to-flash data
movement, and the on-chip network interface as well as the {NoC
router. With the support of these changes, the key difference com-
pared to conventional SSD is that decoupled SSD provides support
for internal data movement within the flash memory side without
the support of the SSD front-end.

4.2 Global Copyback Command

Copyback advanced commands [31] have been proposed to mini-
mize the data transfer overhead of data copy (i.e., a read command
followed by a write command). However, copyback commands are
rarely used in modern flash memory [2] since error correction cannot
be done within the die and result in error propagation. We refer to
legacy copyback advanced commands as local copyback since the
source/destination are restricted to the same flash memory die. In
this work, we exploit the decoupled SSD to not only enable local
copyback but also propose global copyback command. The key dif-
ference is that the global copyback command does not restrict the
write address (or the destination) to the same flash memory die but
the destination can be the same die, another die connected to the
same flash channel, or a die/chip that is connected to a different flash
bus channel. Thus, a page can be read and written to any location
within the SSD using global copyback without using system-bus
and without any support from the FTL. >

Since the source and destination of pages are decided by the FTL’s
garbage collection policy, the read (source) and write (destination)
addresses of the page copy are provided to the decoupled flash con-
troller as part of the copyback command. Fig 4 shows an example of
how global copyback is executed. The global copyback command is

4The page buffer needs to be sized to be as large as one page (e.g., 4kB) per flash
memory way that is defined as the unit of flash package that shares the flash interface.
In our evaluation, we assume 8-ways per channel and size the page buffer to support 16
pages to enable multiplane operations across the multiple ways.

SThe FTL does need to be aware that copyback command is available and the “destina-
tion” during garbage collection can be any other flash memory in the system.

Channel
CMD
controller

10[7:0]

NAN
Flash

Write

Command
X | queue entries

Copyback | A €
Read E -

QN |~
Bl

— —p
Read Write

WRITE ! 1 "
3
[J] Channel — iy
& cMD Paze o 10(7:0]
E controller Buffers LA = AND
E 3 ,E z
3 ECC | =
«© ﬁ CMD qudue
. — Memory
4_—_.’@7—’
.. TR || - Command/
I Address | W Routin
Global copyback |5)
packet o~ Data Information
J L]

Figure 4: Detailed block diagram of a decoupled controller and global copyback data movement between different flash channels.

received via the system bus (D) at the source flash controller and up-
dates the command queue with the copyback command that was just
received. The global copyback is executed in multiple stages. The
first step includes issuing a low-level read command/address such
that the appropriate page is read out from the flash memory @)°.
The page that is read is stored into a decoupled page bufter (dBUF)
(®). In the next step, the command queue moves the page from
the dBUF into the ECC engine to detect (and potentially correct)
errors (@). If the destination of the copyback is the same channel, a
write low-level command is issued and write occurs. However, if the
destination of the page is a different flash channel, “packetization” is
required within the network interface () before accessing the router
(®) and traversing the fNoC (flash-controller network-on-chip)(@).
When transmitting a packet, the data (or page) is appended with the
command information as well as the packet header.

When the packet arrives at the destination node router, the packet
is parsed and divided into the command/address and data (page).
Since the error check for the data (page) was already done at the
source flash controller, no additional error check is necessary. The
command/address is inserted into the destination controller’s com-
mand queue (©) and the data is copied to decoupled buffer (dBUF)
to avoid interference with the general I/Os. Finally, the write op-
eration is conducted by the command controller () to finish the
internal data movement or the global copyback. During the move-
ment of data, the command queue keeps track of the commands; for
the copyback commands, a “status” is also maintained to determine
which stage of the command is currently being executed —e.g., R
identifies that the read has been done, RE identifies that error de-
tection/correction has been done after the read, etc. In addition, the
command queue also maintains the source and/or destination and
the pointer to location within the page buffer that contains the data.

5 DYNAMIC SUPERBLOCK MANAGEMENT

In this section, we describe how dSSD can be exploited to dynami-
cally manage superblocks and improve SSD lifetime without FTL
support. By introducing a mapping table within the decoupled con-
troller and fNoC, superblock management can be improved. In par-
ticular, we propose recycled block that enables efficient usage of

SNote that a global copyback command does not use (or local) copyback operation [31]
even if the page is destined for the same die to avoid error propagation.

(5= bad block
(a) Static superblock (b) Dynamic superblock
. Recycled
Physical Page Superblock hln;kll') Ne: D Physical Page
Number ==¥| Remappin, e
(PPN) Table (SRT Number
(R-PPN)
Recycle blockiD
Block B RESERVED
Table(RBT) G Free blocks

(c) Decoupled Controller Remapping Logic

Figure 5: Flash-memory side of an SSD controller for (a) static
superblock and an example of a bad sub-block, (b) how dynamic
superblock can be created, and (c) a high-level diagram of the
remapping logic within the decoupled controller.

superblock through a recycle table — a hardware-based address trans-
lation for re-usable sub-blocks’ of a superblock.

5.1 Recycled Blocks

A superblock [18] is often organized as multiple blocks across dif-
ferent flash channels as shown in Fig 5(a). 8 To simplify superblock
organization while maximizing parallelism across the channels, the
same block ID across multiple channels (or planes) is grouped to-
gether to create a superblock. The advantages of superblock include
reduced mapping table size and higher performance from optimizing
garbage collection overhead [18]. However, conventional superblock
mapping can be inefficient since it does not consider process vari-
ation across different flash dies [15, 40]. For example, if an uncor-
rectable error (detected by the ECC engine) occurs in one of the

7We use sub-blocks to refer to blocks that make up a superblock.
8For simplicity, each flash memory is shown as a collection of blocks and other flash
hierarchy (e.g., die, planes, etc.) are not shown.

Superblock Recycle

Remapping Block @ Copy valid pages

Bad- superblock

@ Update Remapping table entry

Table Table DEAD

[blockID[New ID] [blockID| i lockID| D [blockiD|
N N |

I I |

I -
L[I |

[blockiD[New 1D] [blockiD)
L B
L[I]

[blockiDINew ID] [blockiD]
L A
L[JL]
[blockiD[New 1D]
I
L1

[blockID[New 1D| [blockiD]
- -
L 1]

Decoupled controllers

Decoupled controllers

Superblocks

(a) (b)

I A § o o]
L[I]

PlockiD/New 1D T

I — | |
— -]

D [bloguoNew D] blockin]| | e (4)
.l

——— |

—— L]

) (g
i

Decoupled controllers 0 1 2 3

Superblocks Superblocks

(c)

Figure 6: An example of dynamic superblock using superblock remapping table (SRT) and recycle blocks table (RBT). (a) When a bad
superblock occurs, entire valid pages are copied to a new superblock by the FTL. At the same time, the re-usable sub-blocks from the
superblock are added to the RBT. (b) When another bad superblock occurs, valid pages in the sub-block that are identified as “dead”
are moved to a recycled block, and (c) an address remapping of ([D] to [A]) is inserted into the SRT for the new dynamic superblock.

pages in a sub-block of a superblock (Fig 5(a)), other sub-blocks of
the superblock are marked as a “bad” block by the FTL to prevent
further usage of the given superblock — even though there are sub-
blocks within the superblock that can still be used. We refer to this
superblock organization as static superblock since the same offset
across the channels/dies is leveraged to form a superblock.

To overcome the limitation of the static superblock and provide
the ability to reuse sub-blocks that are still good, we propose to
exploit decoupled SSD by introducing a hardware-based mapping ta-
ble within the decoupled controller (Cp) to recycle sub-blocks from
“dead” superblocks. In particular, we propose dynamic superblock
organization as shown in Fig 5(b) that changes the physical loca-
tion of sub-blocks within a superblock. The recycled sub-block is
transparent to the FTL by exploiting the decoupled SSD architec-
ture — thus, there is no overhead to the FTL while the benefits of
the superblock are still provided and improve SSD endurance. The
key observation that we exploit is that a “dead” superblock does not
necessarily mean all of the sub-blocks are dead.

In this work, we define recycled blocks as blocks or sub-blocks
within a superblock that are still “good” or useful because none
of the pages within the blocks have reached the uncorrectable sta-
tus. 2 To enable dynamic superblock management, we propose a
hardware-based remapping to recycle valid blocks that remain from
superblocks through two tables in the decoupled flash controller — a
superblock remapping table (SRT) and a recycle block table (RBT)
(Fig. 5(c)). Each decoupled controller has both SRT and RBT and
the tables are maintained individually by each controller. The RBT
contains information about valid blocks that can be accessed by
the controller’s flash channel. Entry to the RBT is added when a
superblock is “dead” but there are valid sub-blocks. The RBT is
effectively a recycling bin of blocks that can be recycled and used
as part of a dynamic superblock. The SRT is the hardware-based
remapping table of the superblock and is updated when a recycled
block from the RBT is utilized in a dynamic superblock. The FTL is

9 A sub-block consists of multiple pages and each page has a different raw bit error rate
(RBER) as program/erase (P/E) cycle increases, but the page with the highest RBER
triggers uncorrectable error [40].

unaware of the SRT as the dynamic superblock is created without
FTL support and extends the lifetime of individual superblocks.

5.2 Dynamic Superblock Walk-through Example

An example of how the SRT and RBT tables are modified and uti-
lized is shown in Fig 6. Initially, both tables (superblock remapping
table (SRT) and recycle block table (RBT)) are empty. The SRT is
not initially accessed by any commands from the command con-
troller during normal operations. Once the first uncorrectable error
is observed, the information is communicated to the FTL and the
superblock is considered to be a “bad” superblock. FTL then moves
all valid pages in the bad superblock to another free superblock
(Fig 6(a)-(D). These steps are identical to a conventional static su-
perblock. However, the decoupled flash controller where the error
was detected (i.e., the top flash channel in Fig 6(a)-®@) notifies the
other flash controllers that a sub-block in its channel has gone dead.
This information is used to determine that their corresponding sub-
blocks should be added to the RBT. From the FTL’s perspective, the
sub-blocks added to the RBT are not “available” but the hardware
recycles them for dynamic superblock.

When an another uncorrectable error occurs to a different su-
perblock, (Fig 6(b)-® at D (2nd sub-block of superblock 3)), the
second flash controller does not notify the FTL as before since an
entry or a recycled block in the RBT is available (Fig 6(c)-@ 2).
The flash controller prolongs the life of the superblock by using the
“spare” or the recycled block and updates the superblock remapping
table (SRT) (i.e., sub-block 1 in superblock 0) by inserting the map-
ping D — A (Fig 6(c)-). In addition, the decoupled flash controller
performs an internal copy of the valid pages in block D to block
A using global copyback described earlier in Section 4. After the
new superblock mapping is dynamically created, FTL continues to
access superblock 3 without knowledge of the dynamic superblock
remapping. However, within the flash-memory side, any commands
destined for 1st sub-block of superblock 3 are internally remapped
to the 1st sub-block of superblock 0 (Fig 6(c)).

5.3 Reservation-based Dynamic Superblock

Dynamically re-organizing a superblock improves SSD endurance
as the occurrence of bad-blocks (or bad “superblocks”) is delayed
by utilizing recycled blocks. As shown later in Section 6.4, dynamic
superblock helps with the rate at which additional bad superblock
occurs through better utilization of the sub-blocks (and recycled
blocks). However, dynamic superblock does not delay the occur-
rence of the first bad superblock since a bad superblock is neces-
sary to create an initial set of recycled blocks — i.e., a superblock
needs to be “sacrificed.” To delay the occurrence of initial bad su-
perblocks, we extend recycled superblock with reservation-based
recycled superblock where some number of physical blocks are
initially reserved or provisioned as recycled blocks —i.e., the RBT
is not initially empty but filled with reserved recycled blocks. A
predetermined number of blocks (or superblocks) is leveraged by
the decoupled flash controller, as recycled blocks, to delay the occur-
rence of the bad superblocks and improve SSD endurance. The only
change required is that the reserved blocks are properly initialized
within the RBT prior to any access to the flash memory.

6 EVALUATION
6.1 Methodology

We used Simple-SSD simulator [10] in standalone mode and inte-
grated Booksim [14] interconnect simulator to implement decoupled
SSD. A bus structure is modeled for system-bus in SimpleSSD while
Booksim is used for flash controller interconnect (i.e, fNoC). Both
synthetic input and trace workloads [23] are used in the evaluation.
Synthetic input consists of both DRAM “miss” where all access go
the flash memory as well as DRAM “hit” where all I/Os are serviced
by the DRAM. Each decoupled flash controller in the decoupled
SSD (dSSD) has the ECC engine, a router, and the decoupled buffer
(dBUF). The topology of fNoC is a 1-D mesh and minimal (deter-
ministic) routing is used. For performance evaluation, we assumed a
flash chip with one flash die for simplicity and assumed ULL param-
eters [10, 44] as shown in Table 1.0 Detailed simulation parameters
are listed in Table 1. We assume SSD is fully utilized and some ran-
dom fraction of the pages are invalidated such that garbage collection
will be triggered in the simulator. We assume an I/O queue depth of
64 requests to fully utilize the SSD and use I/O requests of 4kB and
128kB to model both low and high I/O request demands. We assume
the I/O requests are fully utilizing the SSD’s internal bandwidth
and we compare the performance when GC is performed. For data
movement, packetization, and routing overheads are modeled.

The different SSD configurations that we compare are summa-
rized in Table 2. We assume a baseline that supports high-throughput
parallel GC (PaGC) [35], which is commonly used [9, 26]. All of
the other architecture configurations compared have 1.25% extra
on-chip bandwidth. BW is identical to the baseline but the additional
bandwidth is used by the system bus. dSSD has the decoupled flash
controller to implement dSSD but the same system bus configuration
as BW. dSSDy, is identical to dSSD but has a separate dedicated
bus that interconnects the flash controllers while dSSDs has the

0por superblock evaluation, we used SSD that consists of 8 channels 4 ways 2 dies 2
planes with TLC-based flash memory parameters and we simplified pages/block to 32
for feasible simulation time.

[Components H Parameters]
Simple-SSD PCI-E 3.0 x8 lanes, system-bus = 8GB/s (x1)
organization DRAM = 8GB/s, a flash bus = 1GB/s (1000Mhz,8 bits)

8 channels 8 ways 1 die 8 planes 1384 blocks 384 pages
gaussian dist., E=5578, 0=826.9, provision ratio 7%
Flash (ULL) read=5us, write=50us, erase=1ms, 4KB page
Memory (TLC) read=60-95us, write=200-500us, erase=2ms, 16KB page
fNoC Topology = 1D mesh, k = 8, n = 1, routing = dim order
Table 1: Simulation Parameters.
[Name H Description
Baseline || Conventional SSD with parallel GC
BW Baseline with additional system-bus bandwidth
dssD decoupled SSD with the same bus bandwidth as BW
dSsSDy dssSD with a separate, dedicate bus to interconnect
flash controllers
dssDg dssD with a fNoC

Table 2: Summary of different architectural configurations com-
pared.

O1/0 mGC B Flash Write m DRAM Write
2 100
38 2& g
ﬂ:L £.9
%@ - g8
Himll
0

BW dSSD dSSDy, dSSD; BW dSSD dSSD}, dSSDy
(a) (b)

Figure 7: (a) Normalized 1/0 and GC performance and (b) sys-
tem bus utilization comparison. All comparisons have the same
amount of on-chip bandwidth for high-bandwidth flash memory.

flash-controller network-on-chip (fNoC). We also compare preemp-
tiveGC [24] where GC is pre-empted to handle I/O traffic as well
as Tiny-Tail [42] that tries to minimize tail-latency by avoiding GC
interference with partially executing GC.

6.2 Results

The results of I/O bandwidth and GC performance are shown in
Fig 7(a) with the results normalized to Baseline. To ensure a
fair comparison, the total on-chip bandwidth is held constant across
the 4 architectures compared. For Baseline and dSSD, the total
on-chip bandwidth is used by the system bus but dSSD provides the
ability for the flash controllers to directly communicate with each
other. dSSDj, has a dedicated bus while dSSDy uses a 1D mesh
(fNoC) for the internal data movement.

BW performance (both I/O and GC) benefits from the increase
in system-bus bandwidth; however, the performance improvement
from providing the same bandwidth to dSSD is much higher. For
example, dSSD results in 42.7% (63.8%) improvement for I/O (GC)
while the improvement for the BW is only 11.8% (10.9%). The main
benefit of dSSD comes from the reduced amount of data movement
between flash controllers by directly transferring pages; however,
ds s still suffers from long tail latency because of shared network
resources (Fig 10(a)). The performance improvement from dSSDy,
is rather small (compared to dSSD) because of fixed, partitioned
bandwidth, and GC performance is bottlenecked by the serialization
across the relatively small bandwidth of the added bus. However, the

Nx1.5 Bx2 Sx3 mx4

Normalized
Performance

O

(a) Low bandwidth (b) High bandwidth

Figure 8: Performance improvement for I/0 and GC on (a) low
and (b) high bandwidth flash memory as the amount of on-chip

bandwidth is increased.

B System bus Flash bus ® Flash Memory fNoC

10 ~ 100
© —_
eg ® Sxg®
ez © — 28 60
FT 4 I— m| 28240
9] =0 T o=
z8 2 I 2°8 20
0
124816/1 2 4 816 0 1248161 2 4 816
baseline dSSD¢ baseline dSSDy¢

(a)1/0 (b) Copyback

Figure 9: Latency breakdown for (a) I/O and (b) copyback as
the number of planes is increased.

performance of dSSD ¢ nearly matches that of dSSD — although the
bisection bandwidth is similar to dSSDj,, multiple channels within
the fNoC can be utilized in parallel — thus, improving the effective
bandwidth and achieving higher performance (compared to dSSDy).
In Fig 7(b), we measure I/O system-bus utilization during GC for
when all access hit in the DRAM (i.e., DRAM Write) and when all
accesses “miss” in the DRAM and access the flash memory (i.e.,
Flash Write). dSSDf shows 18.1% and 66.9% increased system-bus
utilization (compared to baseline) for DRAM Hit/Miss I/O cases as
it successfully decouples contention from ‘sharing.’

In Fig 8, an additional sensitivity study is performed where the
system bus bandwidth is increased up to 4x and the results are
normalized to Baseline. Results are shown for “low” and “high”
bandwidth simulations similar to in Fig 2. We also compare against
four different implementations of dSSD ¢ where the total bandwidth
is increased similarly as well (X1.5 - x4). Since “low” bandwidth
does not fully utilize the system-bus bandwidth even during I/O
and GC contention, increasing system-bus bandwidth has minimal
impact on overall performance — resulting in only 4.6% (for 1/O)
and 13.6% (for GC) improvement even when the system-bus is in-
creased by 2. The benefit with dSSD is slightly higher. However,
for “high” bandwidth (Fig 8(b)), increasing the system-bus band-
width directly impacts both I/O bandwidth and GC performance.
With baseline (x1.5), I/O and GC improves by 13.5% and 19.9%,
respectively. With the same amount of on-chip bandwidth, dSSD ¢
is able to provide further improvement in performance Compared to
baseline, dSSD (x1.5) improves I/O and GC performance by 39.4%
and 68%, respectively. (and 22.8% and 40% compared to baseline
(X1.5)). The decoupled SSD effectively decouples the bandwidth
used by the front-end (for 1/0) with the back-end (copyback) —
thus, when high on-chip bandwidth is required, it is more effective
to “decouple” the bandwidth or separate them to improve overall
performance.

[mBaseline mBW 1 Tiny-tail mdSSD; No GC]
1.25

1/0 —m—Tail-latency

"l

o
ency

0.1

o
o
2
Normalized
verage
1/0 lati
o o
NOy
ounun Uk
I
[e—
[
—
—
—_—

= ——
'g ‘Max
54
&
Q1
= a L2 x © 0000 NO-NOOOONO M O
E 2 2 2 U v B B e
2 9 TECSESPYPLETE88009 gy
S 29 ESE555555 B
> = B k3
(a) Synthetic (b) Traces

Figure 10: (a) I/O bandwidth and tail-latency with 100% DRAM
cached I/0 accesses when GC is triggered on different dSSDs
and (b) workloads results of I/O latency

.00 —] [mBaseline mBW O Tiny-tail mdSSDy]
f]
T 2= x31.
p 9] 1
o085 AL —Baseline | & S g
S A kg
0.70] < y Preemptive §:L “6’_0-5
|4 Tiny-tail O'm =
p ——dSSD¢ Z e 0
0.55 L —e—NoGC | ©,0,0,9,0 N © N OO oo g
1 10 100 1000 VW EFTTEDANNDA L >0 0
Average 1/0 latency (ms) Eag5E8sggv T 53¢
(a) prn_0 = (b) =<

Figure 11: (a) Tail latency comparison for (prn_0), and (b)
average tail-latency improvement for workload traces.

To understand the benefits of dSSDy compared to Baseline,
the latency breakdown of I/0 requests and copyback is shown in
Fig 9. With 1 plane, the I/O latency is determined mostly by the
flash memory contention; as the number of planes increases, the
contention for flash memory (chip) is significantly reduced but the
contention for the flash bus increases, for both the baseline and the
dssbDy. However, the key difference is that the contention for the
system bus is removed for dSSDy. The copyback latency break-
down during GC (Fig 9(b)) shows copyback operation is heavily
dominated by the system-bus and flash bus utilization/contention. In
the decoupled system, the fNoC latency dominates as the number
of planes increases but since fNoC is only used by the copyback
requests, the increase in latency is lower than the added latency from
the system-bus contention in Baseline.

The benefit of dSSD ¢ is maximized when I/O request accesses
hit in the DRAM and does not need to access the flash memory
since the interference between the I/O requests and GC can be
avoided. The I/O bandwidth and tail latency when all I/O accesses
are serviced from the DRAM is shown in Fig 10(a). dSSD f is able
to achieve maximum I/O bandwidth since copyback commands are
not utilizing the system bus or the DRAM. As a result, tail-latency
is significantly reduced 77x (39%) compared to BW and dSSD. In
comparison, even though the system-bus bandwidth is increased in
BW and in dSSD, the I/O bandwidth is not maximized (54.6%) as
the shared system bus results in long tail-latency. Fig 10(b) shows,
on average, 31.9% reduced average 1/0O latency, compared to the
Baseline and 16.1% improvement compared to BW. TinyTail [42]
reduces system-bus contention by partially performing GC per flash
channel but dSSDy still outperforms it by 7.5% since contention is
minimized in dSSDy.

Fig 11 shows the impact on tail-latency for different workloads.
In Fig 11(a), the dSSD ¢ shows that the 99% tail-latency from one
workload (prn_0) improves by 43.7x and 31.2x, compared to
Baseline and BW. Compared with PreemptiveGC, dSSDf shows
20.8x lower tail-latency since PreemptiveGC must copy pages when

16 7
Ex 26
S © 5
(7] (7]

Q4 Q4
& a3
g2 g3
1 1

x0.5 x1 x2 x4 x8 x16 x32 x0.5 x1 x2 x4 x8 x16

Router/flash channel BW ratio Router/flash channel BW ratio

(a) (b)

Figure 12: Impact on garbage collection as the router channel
bandwidth is varied with (a) different number of channels and
(b) different number of ways per channel. The baseline assumes
8 channels and 1 way per channel.

the FTL can no longer postpone GC. TinyTail [42] significantly
reduces tail-latency compared to Baseline; however, I/Os latency
still contends with GC operations due to system-bus conflict even
with increased system-bus bandwidth. As a result, the dSSD ¢ results
in 6.19x lower tail-latency than TinyTail. Across all workloads,
on average, dSSDy results in 31.4x (compared to Baseline),
5.17x (compared to TinyTail) reduction in tail-latency, respectively
(Fig 11(b)).

6.3 Flash controller Network-on-Chip (fNoC)

One key component of NoC is the amount of channel bandwidth [7].
In Fig 12, we vary the amount of router channel bandwidth as the
number of flash channels (Fig 12(a)) and the number of ways per
flash channel (Fig 12(b)) is increased and measure GC performance.
The flash channel bandwidth is held constant and the router channel
bandwidth is varied and the x-axis shows the ratio between the
router channel and flash channel bandwidth. The results of Fig 12(a)
show that as the number of channels increases, more router channel
bandwidth is necessary to maximize GC performance. However, the
performance saturates when there is “sufficient” bandwidth —i.e., the
bisection bandwidth of the NoC is sufficient to handle the random
traffic from the flash channels. In comparison, if the number of ways
is increased (Fig 12(b)) while the number of channels is held constant
at 8, the benefit of dSSD saturates around x2, regardless of the
number of ways. Since N = 8 or 8 channels, the bisection bandwidth
By = N/2 x By where By is the flash channel bandwidth. Since
there are bidirectional channels, X2 provides a sufficient amount of
bandwidth. Although not shown, a similar analysis also holds if a
different topology is used for the evaluation.

Alternative topologies for fNoC is compared in Fig 13 where
bisection bandwidth (By,) is held constant across the different topolo-
gies (1D mesh, ring, crossbar). The amount of bandwidth per channel
of aring is lower than a 1D mesh since ring has twice the number
of channels crossing the bisection. As a result, the performance of
1D mesh is much higher than the ring when the amount of on-chip
bandwidth is limited because serialization latency has a dominant
impact on performance for large packets, compared to hop count.
When there is sufficient bandwidth (i.e., 2GB/s of bisection band-
width), the performance of 1D mesh matches the performance of the
crossbar. The impact of on-chip buffer is shown in Fig 13(b). When
there is an insufficient amount of bandwidth, the on-chip buffer in
the routers has a significant impact on overall performance and the

,g 288 mRing Q__lfé Ring —=—1D Mesh ——X-bar
=300 M 1D Mesh § 1.4

£ 200 WXbar |12 .4éé s
& 100 08

O () 0 0

256
16K
512K
256
16K
512K

0 0.5GB/s 1GB/s 2GB/s 4GB/s
fNoC Bisection bandwidth (B})

x0.5 x1
(a) (b) Router channel bandwidth

Router Buffer size

Figure 13: Performance impact of (a) channel bandwidth and (b)
on-chip router buffer size on garbage collection for alternative
fNoC topologies.

impact of buffers can be costly; however, when there is sufficient
bandwidth, the impact of on-chip buffer is relatively small. In this
work, we assumed a simple 1D mesh topology as it matched the
floorplan of flash controllers [6]. However, as the number of flash
controllers increases and/or the amount of on-chip bandwidth in-
creases, it remains to be seen what the optimal topology for the fNoC
will be.

6.4 Dynamic Superblocks

In this subsection, we compare the impact of the dynamic superblock
and compare a baseline (BASELINE) with recycled superblock
(RECYCLED) (Sec 5.1) and reservation-based recycled superblock
(RESERV) (Sec 5.3). Fig 14(a) shows the result of lifetime improve-
ment from RECYCLED and RESERV. We evaluated an SSD where
a continuous stream of 128K write I/O requests is assumed until
90% of the superblocks are used. To model the RBER variation of
blocks, we leveraged the P/E cycle distribution model for block-level
variation [40] (i.e., E(x) = 5578, o(x) = 826.9). To make the simula-
tion time feasible, we simplified the size of the SSD — and for the
reservation-based recycled superblock (RESERV), we provisioned
7% of the blocks as part of recycled blocks, which means 7% of
blocks are not visible to the FTL.

Fig 14(a) plots the number of bad superblocks on the y-axis while
the x-axis is the amount of data that is written to the SSD. As dis-
cussed earlier in Sec 5.3, the first occurrence of bad-block is the
same in both the BASELINE and RECYCLED. However, there is a
difference in all of the subsequent bad superblocks since the recycle
blocks are re-used as a part of another superblock (i.e., dynamic
superblock). For RESERV, the reserved blocks that are available for
recycled blocks enable the first bad superblock occurrence to be
significantly delayed by 65%. As a result, endurance at the point
of the small number of bad blocks, measured in terms of additional
amount of data written, improved by approximately 19% and 35%,
compared to the BASELINE, for RECYCLED and RESERV, respec-
tively, and the benefits of RESERV decreases as the number of bad
superblock increases. The lifetime of an SSD can be defined as when
a certain fraction of the blocks become bad-blocks [34]. As shown
in Fig 14(a), when the fraction of blocks is lower, RECYCLED can
significantly extend the lifetime of the SSD.

To further understand the impact of process variation, the stan-
dard deviation of the RBER distribution is varied and impacts the
P/E cycle limit for the blocks within a superblock. The benefits of
RECYCLED is higher as the variation increases (Fig 14(b)), com-
pared to the BASELINE. The benefits of RESERV over RECYCLED

BASELINE & RECYCLED A RESERVATION BASELINE RECYCLED|

3
10000 g5 , [WRESERVATION m WAS
c £
o
1000 2
T v 'g § 1
8% 100 SE o0
o E° 100 200 200 800 1600
= Block-wear deviation (o)
£ 8 10
5> c 3
z0 4 Lg a z
o038 2
15 20 25 30 35 40 =%
o
>
Amount of data (TB) O 3ok eak 128k 256k
(a) (512GB) (1TB) (2T8) (4TB)

Num.of total blocks
(c) WAS perf. Overhead

Figure 14: (a) Improvement in lifetime comparison, (b) en-
durance improvement for different block-wear variation, and (c)
I/O performance overhead from Wear-aware scheduling (WAS).

is relatively small at low variation; however, as the variation in-
creases, there is more benefit from RESERV. We also compare our
approach with a software-based superblock management that has
been recently proposed: Wear-aware scheduling (WAS) [40]. WAS is
able to achieve higher endurance since the superblock is managed in
the software (or the FTL) and thus, has variation information for all
of the blocks. In addition, it performs wear-leveling to complement
superblock management.

While our decoupled SSD architecture does introduce additional
hardware overhead compared to WAS, the decoupled SSD archi-
tecture can be exploited to minimize any performance degradation
from the superblock management. WAS requires endurance infor-
mation for each block to make a decision which blocks have similar
endurance by reading at least one page per block. In Fig 14(c), we
evaluate the performance (average I/0O latency) as the total number
of blocks (the number of pages to be readout for RBER update) is
varied. For synthetic write I/Os, there can be up to 2x degradation in
average /O latency when using the software-based superblock man-
agement (i.e., WAS), resulting from accesses to the shared system-
bus and DRAM memory to collect all block’s endurance status.

The hardware-based approach can result in performance degrada-
tion based on the remapping — for example, if the remapping occurs
such that two blocks within a superblock are mapped to the same
channel, channel-based parallelism cannot be exploited. Compared
to BASELINE , RECYCLED can improve endurance but comes
at the cost of performance degradation when all channels are not
equally utilized. Fig 15 shows normalized performance for synthetic
workloads and workload traces. In Fig 15(a), a worst-case synthetic
workload is used to measure the potential performance degradation
as the number of entries of SRT is varied for ULL and TLC-based
SSD. The impact from READ synthetic workload is relatively small
but becomes more noticeable for TLC and frequent WRITE random
accesses — up to approximately 2x degradation on performance with
2k SRT entries. Thus, more SRT entries can improve endurance but
at the same time, have a higher negative impact on performance
as the remapping can potentially introduce more channel and flash
conflicts. However, as discussed earlier, RECYCLED improvement
in endurance does not necessarily come at the cost of performance
degradation before the bad-block is created. As endurance is in-
creased, however, the performance when SSD lifetime is extended,
is degraded compared to BASELINE.

m READ_seq(128k) WRITE_seq(128 [= BASELINE _m RESERVATION |

SB 15
M READ_rand(4k) m WRITE_rand(4k) 8_&’1.2‘3 6%
e<
2.5 © 2075
>0 05
5 2 Eox
SC LuD. N OOMOOOOONOOO U
=0 15 [A D R R B e B e =)
- >SS L eoc oNWM>VN>HC SF0
o D TCO0 O X+~ oL o0
EZ SEFSETE gEaay
0Q - Write-Intensive
z= 1,75
=05 o8 ~1_g 21.7%)
851,21
wawvooeomuvoo EgOJg
Nndasds NN d 535 0
SRRSSENGBS S 3204
2
[
uLL TLC -1 EICI:\TI:\;IZIEl:Izlﬂ:lgﬁ
) $3E3 ¢ FagEe s
Num. of total SRT entries R dIL . <
ead-Intensive
(a) Synthetic (b) Workloads

Figure 15: (a) Synthetic and (b) workload, trace evaluation of
RESERV and BASELINE. (a) plots the performance impact as
the number of SRT entries increases while (b) normalizes the
endurance improvement by the performance overhead.

Trace-based evaluations are shown in Fig 15(b). We use a nor-
malized metric (endurance/performance overhead) as performance
overhead is used to approximate “cost” of dSSD — thus, higher is
better as it means either higher endurance and/or lower cost. On
average, dSSD results in a higher metric, by approximately 21.7%
and 6% for read and write-intensive workloads, respectively. For
read-intensive workloads, most workloads result in improved the
metric compared to the baseline but some workloads (e.g, usr_2,
hm_1) have smaller improvements since these workloads contain
some fraction of write operations. For write-intensive workloads,
some workloads (srcl_2, and prn_0) show a performance drop
since they have a higher fraction of write I/O with a large I/O size and
lead to more flash channel/memory contention. However, most of the
workloads show higher metric than baseline, even with performance
degradation when the SRT size is 2048.

6.5 Overhead

The overhead of dSSD consists of three parts: 1) integrating ECC
engine in the flash controller, 2) the routers, and 3) the decoupled
buffers (ABUFs). An LPDC engine uses approximately 2.56 mm?
in 90nm [11] (or equivalent to 0.122 mm? in 14nm [38]) and repre-
sents approximately 1.5% overhead of the entire SSD controller for
the 8 channels (assuming an SSD controller area is approximately
64mm? [30].) The router cost is negligible due to the small input
buffer size. We synthesized routers to estimate cost based on 45nm
process based on FreePDK [39]. A router area occupies approxi-
mately 0.02mm?, and the proposed fNoC introduces approximately
0.25% area overhead in the SSD controller. The major area overhead
is in the decoupled buffers (dBUFs). However, dBUFs are shared
among multiple flash dies (or ways) in the same flash channel to
reduce the area cost — thus, two 32KB dBUFs (1/8”1 of the baseline
page buffers (2x32KBx8 flash ways)) are required in a decoupled
flash controller, which adds an additional 2.46% area overhead to
the SSD controller.

The main overhead from the proposed dynamic superblocks is
the tables added to the decoupled flash controller. The RBT has very
little area overhead (approximately 32 bits for each decoupled con-
troller) since new recycle blocks are created only when no recycled
block remains. However, RESERV recycle blocks, the RBT table

Description Average I/0 /0 GC System-bus FTL Cost
’ ‘ ‘ Performance ‘ Tail-latency Performance Interference Modification
Preemptive GC is preempted ++ + — 0 0o FTL
GC [24] when I/0 arrives modification
Tiny-tail [42] Service I/Os with + ++ - + - FTL, parity
partial/non-blocking GC pages for RAIN
PaGC [35] perform GC in parallel + + + - o FTL
across all flash memory modification
dSSD Decouple + + + ++ ++ fNoC
(This work) 1/0 & GC datapath

Table 3: Qualitative comparison with representative prior work.‘++’ is excellent, ‘+’ is good, ‘0’ is fair, and ‘-’ is poor.

——32k —e—64k —x—128k =—RECYCLED
1.3 P
° o & 2000 RESERVATION
T 912 o T
> < « + 1500
811 e 25
a3 X 2 , 1000
£e 1 §>
£s 2§ 500
03 OCLVANTOONTOW U < 0
o O NOWOMmON
TTYSARggE 8NuSs32y
€ N < ONWMmOO I
-_ NN MM NS

of SRT entries SRT remapping events

(a) (b)

Figure 16: (a) Endurance improvement by increasing the size of
superblock remapping table (SRT) for different SSD capacities
and (b) the number of active SRT entries as amount of remap-
ping increases. In (a), the number of superblock is increased to
evaluate the impact of SRT.

requires more entries to prepare reserved recycle block information
and is proportional to the reservation ratio (around 1KB per channel
for 7%). In comparison, the remapping entries in the SRT has to
be continuously stored and accessed for dynamic superblock man-
agement and the size of SRT can impact endurance/performance
trade-off. In Fig 16(a), we evaluate the improvement in endurance as
the number of entries in the SRT is increased. In general, more SRT
entries result in higher improvement in endurance. For larger SSD ca-
pacity (i.e., 128k superblocks), more SRT entries are also needed to
maximize endurance improvement. The improvement in endurance
saturates around 1k SRT entries per decoupled flash controller in
our evaluation. Assuming each SRT entry is 32 bits — 16 bits for the
source and 16 bits for the destination (7 bits to specify the die and 9
bits used for block), the SRT table overhead is approximately 4kB.

Fig 16(b) illustrates why endurance improvement saturates. In
the evaluation, we assume an infinite size SRT and measure the
number of active entries in the SRT — i.e., the number of entries
that contain valid remapping information and compare RECYCLED
and RESERV . The plot shows the active SRT entries for one flash
channel but similar trends were observed for other channels. The x-
axis is the number of remapping events (or updates to the SRT) that
occurred during evaluation. As more remapping (or bad superblock)
occurs, the number of active SRT entries increases but when all
of the original or “static” superblock are no longer available, the
number of active SRT entries will no longer increase. RESERV has a
higher number of active SRT entries because of the reserved recycle
blocks but the trend is similar to RECYCLED.

7 RELATED WORK

Table 3 provides a qualitative comparison of this work with represen-
tative prior work. The preemptive-GC [24] avoids GC by postponing

or preempting GC as long as possible; however, it does not elimi-
nate GC contention and eventually, system bus interference occurs
at some point [42]. Tiny-tail [42] greatly improves I/O tail-latency
through partial execution of GC across the flash chips and services
I/0 requests at the same time. However, the system bus contention
cannot be avoided because I/O and GC still need to utilize the system
bus. PaGC [35] accelerates GC performance by exploiting plane-
level parallelism; however, the page size that needs to be transferred
is also significantly higher (i.e., more bursty traffic) that PaGC can in-
stantaneously increase the system bus contention. In addition, dSSD
is orthogonal to prior techniques as dSSD is not necessarily trying to
minimize flash memory conflict, but is an approach to avoid on-chip
system bus contention.

It is well known that the impact of process variation increases as
the technology process shrinks, and it is becoming more significant
as the density of the flash memory reaches its physical limitation.
The block-level process variation [32, 43] needs to be considered, es-
pecially with superblockFTL [18, 40]. Recently, WAS [40] proposed
intelligent superblock organization by dynamically understanding
the wear-out of each blocks, and is carried out by the FTL. The
dynamic superblock management in this work has similar goals;
however, our work decouples the FTL and flash memory, and im-
proves endurance with only hardware support. Understanding the
block error similarity in 3D NAND [43] provides efficient bad-block
management. However, this introduces significant FTL complexity
in order to capture such error similarity of the blocks and comes at
the cost of sacrificing the I/O performance. NetworkSSD [22] was
recently proposed to provide direct flash-to-flash connectivity. While
such SSD can minimize on-chip system bus utilization, it requires
changes to not only the flash memory interface (from dedicated sig-
nals to packetized interface) but also requires changes to the external
flash channel bus. In comparison, the decoupled SSD introduces an
on-chip network between the flash controller that is co-located on
the same chip.

8 CONCLUSION

In this work, we proposed decoupled SSD that reduces system re-
source conflict between front-side and flash controller-side. The
decoupled SSD enables direct communication between flash con-
trollers for efficient internal data movement. To exploit the com-
munication between different flash memory, we proposed global
copyback command that can be offloaded to the decoupled flash con-
troller. We also show how SSD endurance can be improved without
the support of the FTL through dynamic superblock management
— in particular, reliability management is offloaded to the hardware
(or the decoupled controller) by proposing to recycle superblocks to
improve endurance.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable
comments. This work was supported in part by IITP grant funded by
MSIT No. 2020-0-01303 and in part by NRF-2023R1A2C2004229.

Dr.

Jung is supported in part by NRF’s 2021R1A2C4001773,

IITP’s 2021-0-00524, IITP’s 2022-0-00117, Samsung (G01200447),
KAIST IDEC, and Samsung HiPER (G01220296).

REFERENCES

[1]

[2

[3]

[4

[5

6

[7

[8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

(1e]

[17]

(18]

ARM. 2023. AMBA AXI and ACE Protocol Specification. https://developer.arm.
com/documentation/ihi0022/e/AMBA- AXI3-and- AXI4-Protocol-Specification.
Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur Mutlu. 2017.
Error characterization, mitigation, and recovery in flash-memory-based solid-state
drives. Proc. IEEE 105, 9 (2017), 1666—-1704.

Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu. 2015. Read disturb errors in
MLC NAND flash memory: Characterization, mitigation, and recovery. In 2015
45th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE, 438-449.

Yu Cai, Yixin Luo, Erich F Haratsch, Ken Mai, and Onur Mutlu. 2015. Data
retention in MLC NAND flash memory: Characterization, optimization, and
recovery. In 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 551-563.

Yu Cai, Onur Mutlu, Erich F Haratsch, and Ken Mai. 2013. Program interference
in MLC NAND flash memory: Characterization, modeling, and mitigation. In
2013 IEEE 31st International Conference on Computer Design (ICCD). IEEE,
123-130.

Wooseong Cheong, Chanho Yoon, Seonghoon Woo, Kyuwook Han, Dachyun
Kim, Chulseung Lee, Youra Choi, Shine Kim, Dongku Kang, Geunyeong Yu, et al.
2018. A flash memory controller for 15us ultra-low-latency ssd using high-speed
3d nand flash with 3ps read time. In 2018 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 338-340.

W. J. Dally and B. Towles. 2004. Principles and Practices of Interconnection
Networks. Morgan Kaufmann, San Francisco, CA.

NVM Express. 2019. https://nvmexpress.org/wp-content/uploads/NVM-Express-
1_4-2019.06.10-Ratified.pdf.

Congming Gao, Liang Shi, Kai Liu, Chun Jason Xue, Jun Yang, and Youtao
Zhang. 2020. Boosting the performance of SSDs via fully exploiting the plane
level parallelism. IEEE Transactions on Parallel and Distributed Systems 31, 9
(2020), 2185-2200.

Donghyun Gouk, Miryeong Kwon, Jie Zhang, Sungjoon Koh, Wonil Choi,
Nam Sung Kim, Mahmut Kandemir, and Myoungsoo Jung. 2018. Amber*: En-
abling precise full-system simulation with detailed modeling of all ssd resources.
In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 469-481.

Kin-Chu Ho, Chih-Lung Chen, and Hsie-Chia Chang. 2015. A 520k (18900,
17010) array dispersion LDPC decoder architectures for NAND flash memory.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 4 (2015),
1293-1304.

Duwon Hong, Myungsuk Kim, Jisung Park, Myoungsoo Jung, and Jihong Kim.
2019. Improving SSD Performance Using Adaptive Restricted-Copyback Opera-
tions. In 2019 IEEE Non-Volatile Memory Systems and Applications Symposium
(NVMSA). IEEE, 1-6.

Hwang Huh, Wanik Cho, Jinhaeng Lee, Yujong Noh, Yongsoon Park, Sunghwa
Ok, Jongwoo Kim, Kayoung Cho, Hyunchul Lee, Geonu Kim, et al. 2020. 13.2 a
1tb 4b/cell 96-stacked-wl 3d nand flash memory with 30mb/s program through-
put using peripheral circuit under memory cell array technique. In 2020 IEEE
International Solid-State Circuits Conference-(ISSCC). IEEE, 220-221.

Nan Jiang, Daniel U Becker, George Michelogiannakis, James Balfour, Brian
Towles, David E Shaw, John Kim, and William J Dally. 2013. A detailed and
flexible cycle-accurate network-on-chip simulator. In 2013 IEEE international
symposium on performance analysis of systems and software (ISPASS). IEEE,
86-96.

Xavier Jimenez, David Novo, and Paolo Ienne. 2014. Wear Unleveling: Im-
proving NAND Flash Lifetime by Balancing Page Endurance. In 12th USENIX
Conference on File and Storage Technologies (FAST 14). 47-59.

Myoungsoo Jung. 2020. OpenExpress: Fully hardware automated open research
framework for future fast NVMe devices. In Proceedings of the 2020 USENIX
Conference on Usenix Annual Technical Conference. 649—-656.

Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah, Joonhyuk Yoo, and Mahmut T
Kandemir. 2014. HIOS: A host interface I/O scheduler for solid state disks. ACM
SIGARCH Computer Architecture News 42, 3 (2014), 289-300.

Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee. 2006. A
superblock-based flash translation layer for NAND flash memory. In Proceed-
ings of the 6th ACM & IEEE International conference on Embedded software.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

161-170.

Doo-Hyun Kim, Hyunggon Kim, Sungwon Yun, Youngsun Song, Jisu Kim, Sung-
Min Joe, Kyung-Hwa Kang, Joonsuc Jang, Hyun-Jun Yoon, Kanabin Lee, et al.
2020. 13.1 A 1Tb 4b/cell NAND Flash Memory with t PROG= 2ms, t R= 110us
and 1.2 Gb/s High-Speed 10 Rate. In 2020 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 218-220.

Hyojun Kim and Seongjun Ahn. 2008. BPLRU: A Buffer Management Scheme
for Improving Random Writes in Flash Storage.. In FAST, Vol. 8. 1-14.

Jiho Kim, Myoungsoo Jung, and John Kim. 2021. Decoupled ssd: Reducing data
movement on nand-based flash ssd. IEEE Computer Architecture Letters 20, 2
(2021), 150-153.

Jiho Kim, Seokwon Kang, Yongjun Park, and John Kim. 2022. Networked SSD:
Flash Memory Interconnection Network for High-Bandwidth SSD. In 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 388—
403.

Miryeong Kwon, Jie Zhang, Gyuyoung Park, Wonil Choi, David Donofrio, John
Shalf, Mahmut Kandemir, and Myoungsoo Jung. 2017. Tracetracker: Hard-
ware/software co-evaluation for large-scale i/0 workload reconstruction. In 2017
IEEE International Symposium on Workload Characterization (IISWC). IEEE,
87-96.

Junghee Lee, Youngjae Kim, Galen M Shipman, Sarp Oral, Feiyi Wang, and
Jongman Kim. 2011. A semi-preemptive garbage collector for solid state drives.
In (IEEE ISPASS) IEEE International Symposium on Performance Analysis of
Systems and Software. IEEE, 12-21.

Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon Park,
and Ha-Joo Song. 2007. A log buffer-based flash translation layer using fully-
associative sector translation. ACM Transactions on Embedded Computing Systems
(TECS) 6, 3 (2007), 18—es.

Chun-Yi Liu, Yunju Lee, Wonil Choi, Myoungsoo Jung, Mahmut Taylan Kandemir,
and Chita Das. 2021. GSSA: A resource allocation scheme customized for 3D
NAND SSDs. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 426-439.

Yixin Luo, Saugata Ghose, Yu Cai, Erich F Haratsch, and Onur Mutlu. 2018.
HeatWatch: Improving 3D NAND flash memory device reliability by exploiting
self-recovery and temperature awareness. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 504-517.

Yixin Luo, Saugata Ghose, Yu Cai, Erich F Haratsch, and Onur Mutlu. 2018.
Improving 3D NAND flash memory lifetime by tolerating early retention loss
and process variation. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 2, 3 (2018), 1-48.

Marvell. 2020. 88SS1098 SSD Controller. https://www.marvell.com/content/dam/
marvell/en/public-collateral/storage/marvell-storage-88ss1098- product-brief-
2018-03.pdf.

MARVELL. 2021. Marvell Bravera SC5 SSD Controllers. https:
/Iwww.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-
ssd-mv-ss1331-1333-product-brief.pdf.

ONFI. Feb 2020. Open NAND Flash Interface Specification rev 4.2”. http:
/lwww.onfi.org/specifications.

Yangyang Pan, Guigiang Dong, and Tong Zhang. 2012. Error rate-based wear-
leveling for NAND flash memory at highly scaled technology nodes. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 21, 7 (2012), 1350—
1354.

Yunhui Qiu, Wenbo Yin, and Lingli Wang. 2021. A high-performance and scal-
able NVMe controller featuring hardware acceleration. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 41, 5 (2021), 1344—
1357.

Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash Reliabil-
ity in Production: The Expected and the Unexpected. In /4th USENIX Con-
ference on File and Storage Technologies (FAST 16). USENIX Association,
Santa Clara, CA, 67-80. https://www.usenix.org/conference/fast16/technical-
sessions/presentation/schroeder

Narges Shahidi, Mahmut T Kandemir, Mohammad Arjomand, Chita R Das, My-
oungsoo Jung, and Anand Sivasubramaniam. 2016. Exploring the potentials
of parallel garbage collection in ssds for enterprise storage systems. In SC’16:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 561-572.

Youngseop Shim, Myungsuk Kim, Myoungjun Chun, Jisung Park, Yoona Kim,
and Jihong Kim. 2019. Exploiting process similarity of 3d flash memory for high
performance ssds. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. 211-223.

Yong Ho Song, Sanghyuk Jung, Sang-Won Lee, and Jin-Soo Kim. 2014. Cosmos
openSSD: A PCle-based open source SSD platform. Proc. Flash Memory Summit
(2014).

Aaron Stillmaker and Bevan Baas. 2017. Scaling equations for the accurate
prediction of CMOS device performance from 180 nm to 7 nm. Integration 58
(2017), 74-81.

James E Stine, Ivan Castellanos, Michael Wood, Jeff Henson, Fred Love, W Rhett
Davis, Paul D Franzon, Michael Bucher, Sunil Basavarajaiah, Julie Oh, et al. 2007.

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-storage-88ss1098-product-brief-2018-03.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-storage-88ss1098-product-brief-2018-03.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-storage-88ss1098-product-brief-2018-03.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-ssd-mv-ss1331-1333-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-ssd-mv-ss1331-1333-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-ssd-mv-ss1331-1333-product-brief.pdf
http://www.onfi.org/specifications
http://www.onfi.org/specifications
https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder
https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder

[40]

[41]

[42]

FreePDK: An open-source variation-aware design kit. In 2007 IEEE international
conference on Microelectronic Systems Education (MSE’07). IEEE, 173-174.
Shunzhuo Wang, Fei Wu, Chengmo Yang, Jiaona Zhou, Changsheng Xie, and
Jiguang Wan. 2019. WAS: Wear aware superblock management for prolonging
SSD lifetime. In Proceedings of the 56th Annual Design Automation Conference
2019. 1-6.

Jin Xue, Tianyu Wang, and Zili Shao. 2022. MCMQ: Simulation Framework
for Scalable Multi-Core Flash Firmware of Multi-Queue SSDs. In 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 502-507.
Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sun-
dararaman, Andrew A Chien, and Haryadi S Gunawi. 2017. Tiny-tail flash:
Near-perfect elimination of garbage collection tail latencies in NAND SSDs. ACM

[43]

[44]

[45]

Transactions on Storage (TOS) 13, 3 (2017), 1-26.

Jui-Nan Yen, Yao-Ching Hsieh, Cheng-Yu Chen, Tseng-Yi Chen, Chia-Lin Yang,
Hsiang-Yun Cheng, and Yixin Luo. 2022. Efficient Bad Block Management with
Cluster Similarity. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 503-513.

Jie Zhang, Miryeong Kwon, Michael Swift, and Myoungsoo Jung. 2020. Scalable
parallel flash firmware for many-core architectures. In /8th USENIX Conference
on File and Storage Technologies (FAST 20). 121-136.

Kai Zhao, Wenzhe Zhao, Hongbin Sun, Xiaodong Zhang, Nanning Zheng, and
Tong Zhang. 2013. LDPC-in-SSD: Making advanced error correction codes work
effectively in solid state drives. In //th USENIX Conference on File and Storage
Technologies (FAST 13). 243-256.

	Abstract
	1 Introduction
	2 Background
	2.1 SSD Architecture
	2.2 Flash Translation Layer (FTL)

	3 Motivation: Case for Decoupled SSD
	4 Decoupled SSD (dSSD) Architecture
	4.1 Decoupled SSD Architecture
	4.2 Global Copyback Command

	5 Dynamic Superblock Management
	5.1 Recycled Blocks
	5.2 Dynamic Superblock Walk-through Example
	5.3 Reservation-based Dynamic Superblock

	6 Evaluation
	6.1 Methodology
	6.2 Results
	6.3 Flash controller Network-on-Chip (fNoC)
	6.4 Dynamic Superblocks
	6.5 Overhead

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

